Abstract:
An improved control system for a stepper motor coil includes a flyback circuit that dissipates coil energy slowly while the coil is energized and operated in the chopping mode, while dissipating coil energy rapidly when the coil is switched to its de-energized phase.
Abstract:
The invention relates to a method and apparatus for conducting light onto cuvettes in a photometer. Onto each cuvette in a row, there is successively conducted light through a moving light-cutting disc (8), which is provided with a slot (10) at each light path. Thus the light passing through the adjacent cuvette does not disturb the measurement.
Abstract:
A photometric reading device comprises a plurality of reading elements (30), each comprising a light emitting diode and a corresponding photodiode on opposing sides of a sample pathway along which a sample microplate (10) can travel. The microplate (10) includes rows of sample wells arranged transverse to the line of relative motion of the microplate (10) and the reading elements (30).The reading elements (30) are arranged such that, during continuous relative motion of the reading elements (30) and the microplate (10), the reading elements (30) come into registration sequentially with the wells in the first row of wells in the microplate (10), then with the wells in the second row of wells, and so on.
Abstract:
Endotoxin contents in samples can be determined qualitatively, or quantitatively, singly or in parallel, with high precision in a short time by a process comprising applying a light to each sample solution, measuring an initial transmitted light amount I.sub.0 and a transmitted light amount at a time t, I(t), to give a ratio R(t)=I(t)/I.sub.0, and judging a gelation point by a threshold value of R(t), or further obtaining a gelation time from the gelation point. An apparatus used therefor is also disclosed.
Abstract:
A measurement device includes mechanical support elements (101-104) for supporting a sample well, other mechanical support elements (105-109) for supporting a measurement head (112) suitable for optical measurements, and a control system (111) configured to control the measurement head to carry out at least two optical measurements from at least two different measurement locations inside the sample well, where each measurement location is a center point of a capture range from which radiation is captured in the respective optical measurement. The final measurement result is formed from the results of the at least two optical measurements in accordance with a pre-determined rule. The use of the at least two optical measurements from different measurement locations reduces measurement variation in situations where the sample well (153) contains a piece (158) of sample carrier.
Abstract:
A system for measuring optical signal detector performance includes an optical signal detector comprising a first detection channel having a first light source and a first sensor. The first detection channel is configured to emit and focus light generated by the first light source at a first detection zone, and to receive and focus light on the first sensor. The system also includes a controller operatively coupled to the optical signal detector and configured to determine an operational performance status of the optical signal detector based on at least one of (i) a first measured characteristic of light focused on the sensor while a first non-fluorescent surface portion is in the first detection zone and (ii) a second measured characteristic of light focused on the sensor while a void is in the first detection zone. The optical signal detector can be a fluorometer.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
A tip for use in an optical detection system to analyze an analyte in a fluid sample drawn into the tip, using light reflected from a detection surface inside the tip that the analyte binds to, comprising a first detection surface and a second detection surface located in a same flow path with no controllable valve separating them, wherein the first and second detection surfaces have different surface chemistries.
Abstract:
An oxygen analysis system (OAS) for measuring, monitoring and recording oxygen concentration in aircraft fuel tanks. The OAS has a rack support structure installed in an aircraft cabin with a plurality of oxygen analyzer devices mounted in the rack support structure. Each oxygen analyzer device has an oxygen sensor to measure oxygen concentration in gas samples continuously drawn from sample locations in aircraft fuel tanks and at an aircraft NGS ASM exit. The OAS further has a plurality of valves, a supply of calibration gases, a supply of purge and operating gases, and a power distribution assembly, all coupled to the rack support structure. The OAS further has a transport tubing assembly, a plurality of fuel tank gas sampling ports, an NGS ASM exit gas sampling port, a drain manifold assembly, and a data acquisition and recording system having a user interface software to monitor and control the OAS.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules that are optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector. In addition, the device may control the flow of fluid in the disk by locating and selectively opening valves separating chambers by heating the valves with a laser.