Abstract:
The present invention provides a method for measuring reflective intensity of display surface, including: obtaining a luminance value of a first display and a luminance value of a second display when displaying, the first display and the second display having the same observed luminance, the peripheral of the surface of the first display being surrounded by light-shielding object, the first display and the second display being placed side by side; and obtaining the reflective intensity of the display surface in the ambient based on the luminance value of the first display and the luminance values of the second display when displaying. As such, the present invention provides convenient and accurate means to measure the reflective intensity of display surface.
Abstract:
An index value is calculated for rating an eyeglass with respect to protection against UV hazard. The index value is based on an integrated UV transmission value through the eyeglass and an integrated UV reflection value related to a back face of the eyeglass. Thus, the index value takes into account actual wearing conditions where UV eye exposure is due either to transmission through the eyeglass or reflection on the eyeglass back face. Respective index values obtained for a set of eyeglasses allow easy sorting of the eyeglasses with respect to UV protection efficiency.
Abstract:
The present invention provides a method for measuring reflective intensity of display surface, including: obtaining a luminance value of a first display and a luminance value of a second display when displaying, the first display and the second display having the same observed luminance, the peripheral of the surface of the first display being surrounded by light-shielding object, the first display and the second display being placed side by side; and obtaining the reflective intensity of the display surface in the ambient based on the luminance value of the first display and the luminance values of the second display when displaying. As such, the present invention provides convenient and accurate means to measure the reflective intensity of display surface.
Abstract:
The invention relates to a method for detecting the presence of hydrocarbons near an unmanned offshore oil platform. The method steps include monitoring reflected atmospheric and thermal radiation, detecting the presence of hydrocarbons, and generating an alert based on the presence of hydrocarbons.
Abstract:
The invention relates to a method for detecting the presence of hydrocarbons near an unmanned offshore oil platform. The method steps include monitoring reflected atmospheric and thermal radiation, detecting the presence of hydrocarbons, and generating an alert based on the presence of hydrocarbons.
Abstract:
A system and method and for analyzing dew in a system of interest are provided. A representative method comprises receiving infrared information corresponding to a degree of polarization of dew in a particular environment, and using the degree of polarization to determine dew presence in the environment. Changes in the degree of polarization can be attributed to changes in the density, size or shadowing of the dew drops. Infrared emissions information can be detected and accumulated over a range of emission angles and over a period of time. The system compares the accumulated data for the particular environment to detect the presence of dew, the rate of growth of the dew and the change in characteristics of dew over a period of time starting from a first time interval. The system also compares the accumulated data with other previous accumulated data from the environment to detect if changes should be made to the environment.
Abstract:
A produce recognition method which determines an optimal number of candidate identifications in a candidate identification list. The method includes the steps of obtaining produce data associated with a produce item, determining distances between the produce data and reference produce data, determining confidence values from the distances, determining first confidence values which are greater than a threshold confidence value, displaying candidate identifications associated with the first confidence values, and recording an operator choice of one of the candidate identifications.
Abstract:
To derive sunlight induced fluorescence from radiance measurements, a first radiance measurement is taken inside an atmospheric absorption band, and an additional radiance measurement is taken outside of the atmospheric absorption band. Images of sunlight-induced fluorescence are obtained with the aid of a camera. Air- or spaceborne spectrometers and image points on non-fluorescent objects are used to determine the radiance conditions on the ground and the influence of the atmosphere.
Abstract:
An apparatus for determining the fluorescence of materials in a scene which includes optical means to collect radiation from the scene. Means are provided to divide the collected radiation into first and second beam paths. The first beam path traverses a first filter centered on a Fraunhofer line and having a passband which extends into the solar continuum on either side of the Fraunhofer line. The second beam path traverses the first filter and a second filter, also centered on the Fraunhofer line, with a passband on the order of half the bandwidth, at half-depth, of the Fraunhofer line. Means are provided to image the first and second beams onto first and second detector arrays, respectively. The image on the first detector array is registered with the image on the second detector array. Co-adding means are provided whereby successive detector pixels at successive time intervals corresponding to a single point on the ground are added and averaged. The time interval is a function of a constant clock rate and a V/H signal. A single detector is provided to detect the intensity of direct solar radiation outside the Fraunhofer line. A processor compares the value of intensity from the co-added point on the ground from the first and second detector arrays and the single detector to determine fluorescence at each point on the ground in the scene being viewed. In another form, where an optical laser illuminator is employed, the first beam path traverses a first filter which only allows the laser radiation to pass. The second beam path has a passband which passes the emission spectrum of a material excited by the laser radiation.
Abstract:
The present invention relates to a system for in-situ measurement of an apparent spectrum of a water body. The system comprises a floating device, and an optical sensing and conduction device, an electronic measurement device, a control circuit and a power supply device which are loaded on the floating device. The floating device comprises a floating body ring and an optical probe mounting frame which is provided on the floating body ring in a direction perpendicular to a ring surface. The optical probe mounting frame comprises a vertical mounting assembly and a horizontal connecting assembly. The horizontal connecting assembly is provided radially along the ring shape of the floating body ring, one end of the horizontal connecting assembly being connected to the vertical mounting assembly, and the other end thereof being connected to the floating body ring, such that the vertical mounting assembly is overhung outside the ring surface of the floating body ring, and meanwhile a vertical projection of the vertical mounting assembly is located in the center of the ring surface. A ratio of an inner diameter to an outer diameter of the floating body ring is 0.80 to 0.85. The floating body ring is provided with a water-tight cavity which provides flotage for the whole floating device and used for loading a necessary electronic device and a necessary power supply assembly. An optical probe is vertically mounted on the optical probe mounting frame. The device for in-situ observation of the apparent spectrum of the water body disclosed by the present invention may be used for directly measuring a water-leaving radiance Lw of the water body, and can furthest reduce the method defects, personal errors and device errors. The precision of a remote sensing reflectivity Rrs finally observed of the water body is improved remarkably, and the operations are simple.