Apparatus and method for rotating an optical objective

    公开(公告)号:US11733172B2

    公开(公告)日:2023-08-22

    申请号:US17313703

    申请日:2021-05-06

    CPC classification number: G01N21/8806 G01N2021/8822 G01N2201/063

    Abstract: A dark-field optical system may include a rotational objective lens assembly with a dark-field objective lens to collect light from a sample within a collection numerical aperture, where the dark-field objective lens includes an entrance aperture and an exit aperture at symmetrically-opposed azimuth angles with respect to an optical axis, a rotational bearing to allow rotation of at least a part of the dark-field objective lens including the entrance aperture and the exit aperture around the optical axis, and a rotational driver to control a rotational angle of the entrance aperture. The system may also include a multi-angle illumination sub-system to illuminate the sample with an illumination beam through the entrance aperture at two or more illumination azimuth angles, where an azimuth angle of the illumination beam on the sample is selectable by rotating the objective lens to any of the two or more illumination azimuth angles.

    DEVICE FOR CHEMILUMINESCENCE ANALYSIS
    72.
    发明公开

    公开(公告)号:US20230221259A1

    公开(公告)日:2023-07-13

    申请号:US17998207

    申请日:2021-04-19

    CPC classification number: G01N21/766 G01N2201/063

    Abstract: A device for chemiluminescence analysis includes: a reaction chamber; a first inlet opening for introducing a sample gas into the reaction chamber via a first supply line; a second inlet opening for introducing a reaction gas into the reaction chamber via a second supply line; an outlet opening for discharging a mixture of the sample gas and the reaction gas out of the reaction chamber via an outlet line; a mixer unit in which the sample gas and the reaction gas are mixed; and a sensor unit for detecting chemiluminescent radiation in the reaction chamber, wherein the mixer unit is arranged in a first end region of the reaction chamber, and the sensor unit is arranged in a second end region of the reaction chamber opposite the first end region. An elemental analyzer including the device is also disclosed.

    GAS DETECTION SYSTEM
    73.
    发明申请

    公开(公告)号:US20180356338A1

    公开(公告)日:2018-12-13

    申请号:US15778447

    申请日:2016-11-18

    Inventor: Akihiro TANAKA

    Abstract: In order to perform gas detection at multiple locations with a simple configuration and at a low cost, the gas detection device is provided with: a transmission unit for outputting to a transmission path, as a first optical signal, pulse light that has a temporally changing wavelength and that is generated by pulse light modulated by an optical wavelength modulator; and a reception unit for receiving a second optical signal output from a sensor head outputting the first optical signal propagated through the atmosphere as the second optical signal, converting the second optical signal received into an electric the signal detecting, by each sensor head, a predetermined type of gas contained in the atmosphere based on a temporal change in amplitude of the electric signal, and outputting a result of detection of the gas.

    Methods and systems for optical-based measurement with selectable excitation light paths

    公开(公告)号:US10082466B2

    公开(公告)日:2018-09-25

    申请号:US15138660

    申请日:2016-04-26

    Abstract: In an optical-based sample analysis, for example fluorescence-based or absorbance-based measurement, a selection is made between a first excitation light path and a second excitation light path. The first excitation light path directs excitation light from a light source, through an excitation monochromator, through an excitation filter, and to a sample. The second excitation light path directs excitation light from the light source, through the excitation filter, and to the sample while bypassing the excitation monochromator. Excitation light generated by the light source is transmitted along either the first excitation light path or the second excitation light path in accordance with the selection made, thereby irradiating the sample. In response the sample produces emission light (transmitted light in the case of absorbance measurements), which is transmitted to and measured by a light detector.

    Polarized light imaging apparatus and methods thereof for separating light from a surface of a sample its deeper diffuse layers

    公开(公告)号:US09921148B2

    公开(公告)日:2018-03-20

    申请号:US14786144

    申请日:2014-04-20

    Applicant: MOBILEODT LTD

    CPC classification number: G01N21/21 G01N21/956 G01N2201/063

    Abstract: A polarized light imaging apparatus is provided. In an embodiment, the apparatus comprises a light source for producing light beams; an illumination optic coupled to the light source for guiding the light beams towards the sample; a linear polarizer coupled to the illumination optic and configured to produce a linearly polarized light towards the sample respective of the light beams; a TIR birefringent polarizing prism (BPP) coupled to the sample to maximize a refraction difference between ordinary waves and extraordinary waves of light returning from the sample; and a detection optic unit coupled to the non-TIR BPP for guiding the light waves returning from the sample towards a single polarization sensitive sensor element (SE), the SE is configured to capture at least one frame of the sample respective of the light waves returning from the superficial single-scattering layer of the sample apart from the deeper diffuse layer.

    Wafer image inspection apparatus
    78.
    发明授权

    公开(公告)号:US09829441B2

    公开(公告)日:2017-11-28

    申请号:US15023112

    申请日:2014-11-27

    Abstract: ProA wafer image inspection apparatus for inspecting defects of a semiconductor wafer comprises: a lighting portion for generating light; a lens portion for obtaining a wafer image, which is reflected after the light has been reflected onto a wafer to be inspected, and delivering the wafer image by lighting same in one direction; a dividing optical element for dividing the wafer image delivered from the lens portion; an image detection portion comprising a plurality of image-capturing elements, which are installed so that images which have passed through the lens portion and the dividing optical element are respectively formed on different focus positions; and an image processing portion for combining the images on different focus positions captured by the plurality of image pick-up elements to form a TSOM image, and comparing the TSOM image with a TSOM image of a normal semiconductor apparatus part to determine whether an object is defective.

Patent Agency Ranking