Abstract:
A pixel cell and imager device, and method of forming the same, where the pixel cell has a plurality of metallization and via layers formed over a photosensitive region. The metallization and via layers form a step-like light tunnel structure that augments the photosensitive region's ability to capture light impinging on the photosensitive region.
Abstract:
A scatterometer or parousiameter having a dual beam setup and method for use thereof is provided for producing measurements of optical parameters. The dual beam parousiameter includes a hemispherical dome enclosure (318) sealed at the bottom with a base (320). A radiation source (302) produces radiation in two beams, an illumination beam (304) for illuminating a sample surface (308) and a calibration beam (330) for providing optical characterization information about the illumination beam (304). Each beam is guided into the hemispherical dome enclosure (318) via separate optical paths. An optical imaging device (324) is positioned to acquire an image of scatter radiation (314) scattered by the sample surface (308) illuminated by the illumination beam (304), and acquire an image of the calibration beam, simultaneously. The calibration beam image is used to compensate for variability in optical output of the radiation source (302) when analyzing the scatter radiation data.
Abstract:
An optical measuring device measures optical characteristics of an object in a non-contact state. The optical measuring device has a light source that illuminates an object surface, a light receiver that receives a light beam reflected from the object surface, and a light-regulating member that regulates an illuminating light beam radiated onto the object surface and the reflective light beam reflected from the object surface. The light-regulating member has a first light-regulating member that determines at least one of an illuminating region and a reflective region with respect to the object surface, and a second light-regulating member that determines a region where the reflected light beam that is reflected from the object surface and is incident on the light receiver is measured on the object surface.
Abstract:
An apparatus for non-destructive measurement of internal properties of individual vegetable or fruit pieces comprises: LEDs constructed and arranged to emit radiation into a vegetable or fruit product; pick-up structure constructed and arranged to pick up radiation, emitted by the LEDs, that has entered the vegetable or fruit product and then exited the vegetable or fruit product; a hollow cylinder between the LEDs and the pick-up structure for preventing radiation emitted by the LEDs from directly reaching the pick-up structure; a spectrometer; structure for conveying to the spectrometer the radiation picked up by the pick-up structure; and structure for processing a spectrum frequency and amplitude data as produced by the spectrometer upon the radiation picked up by the pick-up structure being analyzed by the spectrometer.
Abstract:
A liquid particle counter for optically detecting an unconstrained particle suspended in a flowing liquid includes a sample chamber having a liquid inlet and a liquid outlet; a laser diode module producing a symmetrically collimated laser beam; a beam shaping optical system directing the laser beam at the sample chamber; and an optical detector located to detect light scattered by the particle in the sample chamber, the detector producing an electric signal characteristic of a parameter of the particle. The laser beam has an energy of a watt or more and passed through an aperture in a black glass aperture element in the sample chamber. The black glass aperture element removes diffracted and stray light from the beam without damage to the sample chamber.
Abstract:
Instrument for measuring the properties of vegetable products, comprising:nullan energy source adapted to direct a radiation against the fruit,nullmeans for picking up the radiation being re-emitted by said fruit,nulla spectrograph analysing said radiation,nullmeans for conveying said radiation into the spectrograph,nullmeans for processing the data generated by the spectrograph, in which the energy source comprises a plurality of LEDs contained in a single portable casing provided with a handgrip and a probing head. The spectrograph and the processing means are physically separated from said portable casing, to which they are electrically and optically connected via at least a multiple optical/electric connection. The LEDs are provided in closed-loop arrangements on the surface of the probing head and said means for picking up the re-emitted radiation are arranged at the centre of the rings formed by the LEDs that emit radiations whose respective emission spectra are contiguous.
Abstract:
A photometric apparatus (100) for small sample volumes comprises a cell body (102), a light input means (104) arranged adjacent to a first surface of the cell body (102), a light source (105) emitting light of predetermined wavelength or wavelength range through the light input means (104), a light output means (106) arranged adjacent to a second surface of the cell body (102) opposite to the first surface, a light detector (107) arranged adjacent to the light out put means (104), and a flow channel (108) formed in the cell body (102), wherein surfaces of the walls of the channel (108) have a roughness smaller than the predetermined wavelength.
Abstract:
A method of detecting the content of impurity in a gaseous medium has the steps of continually detecting impurities in the gaseous medium, emitting analyzing signals that vary with variation in impurity content, and statistically analyzing the emitted signals. When statistically analyzing the emitted signals, newer signals are accorded greater influence on outputs than are older signals, which become gradually less influential.
Abstract:
Methods and apparatus for measuring the intensity of light scattered by particles suspended in a sample volume illuminated by an interrogating light beam directed along an input axis, utilizing plural Fourier optical systems having lenses arranged for illuminating multiple photodetectors. The lenses of each Fourier optical system can be of different optical powers, for providing low power and high power optical trains. A low power optical train provides high resolution measurements of light scattered within a small angular range at low angles relative to the input axis, while a high power optical train provides lower resolution measurements of light scattered within a larger angular range at higher angles.
Abstract:
Reflectance apparatus is disclosed for obtaining measurement of nonspecular reflected light in which controlled light rays are directed along a transmission path from a light source through a plurality of light traps to expose or illuminate a specimen and nonspecular reflected light is passed from the specimen through the light traps along a transmission path to one or more detectors where the nonspecular reflected light is measured, the detector's field of view being larger than the illuminated area of the specimen over a wide range of specimen to source and detector distances.