Abstract:
A system for optical imaging of a thick specimen that permits rapid acquisition of data necessary for tomographic reconstruction of the three-dimensional (3D) image. One method involves the scanning of the focal plane of an imaging system and integrating the range of focal planes onto a detector. The focal plane of an optical imaging system is scanned along the axis perpendicular to said plane through the thickness of a specimen during a single detector exposure. Secondly, methods for reducing light scatter when using illumination point sources are presented. Both approaches yield shadowgrams. This process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. A set of pseudo-projections is generated, which are input to a three dimensional tomographic image reconstruction algorithm.
Abstract:
A unit for measurement of absorbance using a microchip has a microchip with a continuous cavity, a sample chamber, a reagent chamber, a reagent mixing chamber and a chamber for measuring absorbance, which is arranged in a straight line in the area of the continuous cavity. The microchip is located in a chip holder which has a capillary part which is arranged such that the light used to measure absorbance is delivered through the capillary part to the chamber for measuring absorbance, the capillary part having a smaller opening diameter than the diameter of the cross section which is perpendicular to the optical axis of the chamber for measuring absorbance.
Abstract:
The present invention provides a method for embedding particles in a solid structure including the steps of extruding a slurry of particles and a polymeric solution into a linear polymer medium having particles embedded into a polymer portion; and curing the polymer portion of the linear polymer medium.
Abstract:
A measuring device for immunochromatography test piece comprising an irradiation optical system for irradiating measurement light onto an immunochromatography test piece, and a detection optical system for detecting reflected light from the immunochromatography test piece under irradiation with the measurement light. The irradiation optical system comprises a semiconductor light emitting element, a beam shaping member, a lens, a first baffle portion, a second baffle portion, and a third baffle portion. The beam shaping member shapes light from the semiconductor light emitting element, into a beam of a beam section extending in a direction substantially parallel to a colored line formed on the immunochromatography test piece. The lens focuses the beam from the beam shaping member on the immunochromatography test piece. The first baffle portion removes stray light, which is disposed between the semiconductor light emitting element and the beam shaping member. The second baffle portion removes stray light, which is disposed between the beam shaping member and the lens. The third baffle portion removes stray light, which is disposed between the lens and the immunochromatography test piece.
Abstract:
A system for optical imaging of a thick specimen that permits rapid acquisition of data necessary for tomographic reconstruction of the three-dimensional (3D) image. One method involves the scanning of the focal plane of an imaging system and integrating the range of focal planes onto a detector. The focal plane of an optical imaging system is scanned along the axis perpendicular to said plane through the thickness of a specimen during a single detector exposure. Secondly, methods for reducing light scatter when using illumination point sources are presented. Both approaches yield shadowgrams. This process is repeated from multiple perspectives, either in series using a single illumination/detection subsystem, or in parallel using several illumination/detection subsystems. A set of pseudo-projections is generated, which are input to a three dimensional tomographic image reconstruction algorithm.
Abstract:
A sensing assembly (10) for indicating when moisture or other particles have accumulated on a window (12) having inside (14) and outside (16) surfaces. The assembly includes an emitter (18) disposed on the inside surface (14) of the window (12) to emit infrared energy to the window (12). A detector (20) is disposed on the inside surface (14) to detect infrared energy from the window (12) on an egress axis. A reference detector (22) detects ambient light and emitter output which are parallel to the egress axis. A control circuit (24) receives the detected measurement level and reference level for comparison to actuate the wipers when rain or particles are on the window (12).
Abstract:
A moisture sensing assembly for controlling vehicle accessories such as windshield wipers is mounted on the inner surface of a vehicle window or windshield for detecting moisture on the outer window surface. A plurality of infrared energy emitting diodes and a sensor for receiving reflected infrared energy from the window and any moisture thereon are mounted at predetermined angles and spacing in a support. The support is biased against the window and enclosed in a protective housing detachably mounted to a window mounted plate preferably adjacent a rearview mirror on the front windshield. The support preferably includes an infrared energy monitoring sensor adjacent the emitting diodes which may be combined with or separate from an ambient infrared energy sensor. The monitoring and ambient sensors provide reference energy levels allowing compensation for varying diode output due to temperature and age and varying external vehicle light conditions.