Abstract:
To provide a wind turbine blade or a wind power generation device provided with a strain detecting system having a high level of soundness . The blade 4 includes a structural material constituting the blade 4, plural optical fibers 15A and 15B arranged within or on a surface of the structural material, and an optical cable 16A that connects adjacent ones of the optical fiber sensors 15A to 15G, and a length of the optical cable 16A is longer than the shortest distance between the adjacent optical fiber sensors 15A to 15G.
Abstract:
The present invention relates to an optical fibre for use in a system for detection of one or more compounds in a fluid. The optical fibre (100, 101, 202) comprising at least two binding portions (102, 104, 118, 210, 211, 212) separated from each other along the longitudinal direction (106) of the optical fibre (100, 101, 202), wherein each of the at least two binding portions (102, 104, 118, 210, 211, 212) comprises a plasmonic structure (120) and/or a SERS structure (121), and a binding material (126) for binding of one or more compounds, wherein the optical fibre (100, 101, 202) is arranged for receiving light and transmitting light to each of the at least two binding portions, wherein each of the at least two binding portions (102, 104, 118, 210, 211, 212) is arranged such that light transmitted through that binding portion (102, 104, 118, 210, 211, 212) without bound compound is different compared to light transmitted through that binding portion (102, 104, 118, 210, 211, 212) with bound compound, or light reflected back from that binding portion (102, 104, 118, 210, 211, 212) without bound compound is different compared to light reflected back from that binding portion (102, 104, 118, 210, 211, 212) with bound compound. The present invention further relates to a system (200) for detection of one or more compounds in a fluid (103) and an optical fibre (100, 101, 202) for use in such a system (200) and a method (400) using the system (200).
Abstract:
An apparatus (100) comprises at least one optical cable (104), a detector (106) and a processing unit (108). An end of an optical cable (104) is placed inside the electric arc furnace (10) for collecting light from the furnace (10). The optical cable (104) conveys the light to the detector (106). The detector (106) separates the light into a plurality of optical bands of the spectrum and transforms strengths of the plurality of optical bands into electrical data. The processing unit (108) measures, for determining a state of the furnace (10), a background of the optical bands in a predetermined manner, at least one characteristic strength level of the optical bands and an average deviation of the strengths of the optical bands from the background on the basis of the electrical data.
Abstract:
An apparatus (200), comprising at least one fluorescence optical nanofiber (204) and at least one probe fiber (260), wherein a portion of the probe fiber (260) is disposed within a distance of one hundred nanofiber diameters from the optical nanofiber (204). The first and the second nanofiber ends (208,212) are disposed within a pressure-tight chamber (228), and a portion of the optical nanofiber (204) and the portion of the probe fiber (260) are each disposed outside the chamber (228). An electromagnetic energy source (SC) is arranged to direct source electromagnetic energy having a selected fluorescence frequency to a first nanofiber end (208), and a receiver (RCVR) is arranged to receive fluorescence energy via the probe fiber (260). Sampled downhole fluid (240) is disposed proximate to the nanofiber (204) and the probe fiber (260) portions, such that the sampled downhole fluid (240) provides the fluorescence energy in response to evanescant energy arising from the source electromagnetic energy present in the optical nanofiber (204). Additional systems and methods are disclosed.
Abstract:
A two-core optical fiber is provided for use in Brillouin distributed fiber sensor applications and systems. The two-core fiber includes a first and second core. Each core is configured to exhibit a Brillouin frequency shift greater than 30 Mhz relative to the other core. Further, each core possesses temperature and strain coefficients that differ from the other core. The cores can be configured to produce Brillouin frequency shift levels of at least 30 Mhz relative to one another. These differences in shift levels may be effected by adjustment of the material compositions, doping concentrations and/or refractive index profiles of each of the cores. These optical fibers may also be used in BOTDR- and BOTDA-based sensor systems and arrangements.