Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
A spread-spectrum-signal reception apparatus includes a controller to obtain a phase comparison value that is a phase of a spread code at a time at which initialization of a phase of the spread code is performed and which corresponds to a timing of a top of a frame of a received signal, and to output an initialization instruction including the phase comparison value when having determined that a current time is within a range of a time window; and a signal processor to demodulate the received signal in accordance with the spread code, to perform a frame synchronizing process on the demodulated signal to detect a frame timing, and to perform the initialization at a timing determined in accordance with a result of comparison between the phase comparison value included in the initialization instruction and a phase of the spread code at the frame timing.
Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
A UWB impulse receiver including an RF stage followed by a baseband processing stage. The baseband processing stage includes a Rake filter including a plurality of time fingers, each finger including an integrator of the baseband signal during an acquisition window, a control module, and a detection module estimating the received symbols from the integration results. During a synchronization phase, the control module drives respective positions of the acquisition windows associated with the different fingers, to scan at a reception interval, the RF stage only operating, in a course of the synchronization phase, during the plurality of acquisition windows.
Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
Abstract:
A system and method of extracting data from data packets transmitted over a wireless network includes receiving a data packet having a preamble portion and a payload portion. The preamble portion is cross correlated with a first known spreading sequence to generate a first timing signal and the preamble portion is cross correlated with a second known spreading signal to generate a frame timing signal. An impulse is detected in the first timing signal and a first timing parameter is set based upon the detected impulse in the first timing signal. An impulse is detected in the frame timing signal and a frame timing parameter is set based upon the detected impulse in the frame timing signal. Data is extracted from the received payload portion according to the first timing parameter and the frame timing parameter.
Abstract:
Various exemplary embodiments relate to a device for performing a method of communication transmission. The device may include a memory; a processor configured to: determine a spreading code with low sidelobe levels in its autocorrelation sequence to be used; create a Start of Frame Delimiter (SOFD) for a packet including the spreading code and a cyclic prefix, wherein the cyclic prefix is a portion of the spreading code; and transmit the packet with the SOFD.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes receiving a signal via a wireless channel, performing code synchronization by at least using a peak counter to count peak correlations based on the signal and a known preamble, performing frequency synchronization based on the signal, and using, based on a successful completion of the code synchronization, at least a result of the frequency synchronization to demodulate data from the signal. The technique includes starting the frequency synchronization during the code synchronization when an output value of the peak counter satisfies a predetermined criterion.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period for carrier tracking. Further, the data processor, through combining two sets of BOC correlations with different chip spacings provides an alternative unambiguous code acquisition of the received signal.
Abstract:
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.