Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
An optical unit may include an image pick-up device, a lens unit and a holding member. The image pick-up device may convert a reflected light reflected from an original document to an electric signal, after the light is irradiated on the original document from a light source. The lens unit may image the reflected light on the image pick-up device. The holding member may hold the image pick-up device and lenses. The direction of a fluctuation of a focal length of the lens unit caused by heat and a direction of the fluctuation of a distance between the image pick-up device and the lens unit caused by heat may agree with each other.
Abstract:
An optical unit may include an image pick-up device, a lens unit and a holding member. The image pick-up device may convert a reflected light reflected from an original document to an electric signal, after the light is irradiated on the original document from a light source. The lens unit may image the reflected light on the image pick-up device. The holding member may hold the image pick-up device and lenses. The direction of a fluctuation of a focal length of the lens unit caused by heat and a direction of the fluctuation of a distance between the image pick-up device and the lens unit caused by heat may agree with each other.
Abstract:
An imaging system (60) comprises a housing (200) with reference surfaces (274,276), a lens (570) in contact with the reference surfaces (274,276), a member (600) retained to the housing in contact with the lens, and a spring (720) located between and in contact with a portion (282,332,342) of the housing and the lens. In a first operating condition, the member (600) is retained to the housing at a first location (350,360,370,380) and the lens is translatable with respect to the housing (200) and in a second operating condition, the member (600) is retained to the housing at a second location (420,424) and the lens is not translatable with respect to the housing.
Abstract:
An imaging system (60) comprises a housing (200) with reference surfaces (274,276), a lens (570) in contact with the reference surfaces (274,276), a member (600) retained to the housing in contact with the lens, and a spring (720) located between and in contact with a portion (282,332,342) of the housing and the lens. In a first operating condition, the member (600) is retained to the housing at a first location (350,360,370,380) and the lens is translatable with respect to the housing (200) and in a second operating condition, the member (600) is retained to the housing at a second location (420,424) and the lens is not translatable with respect to the housing.
Abstract:
In an imaging system (60) of the type having a photosensor package (510) and at least one optical component (570), e.g., a lens, mounted within an optical assembly housing (200), the photosensor package (510) is mounted to a substrate (540), such as a printed circuit board, which has a shorter length than the photosensor package (510). This shorter length causes the ends of the photosensor package (510) to extend beyond the substrate (540) and, thus, be exposed. The exposed ends (524, 526) of the photosensor package (510), in turn, allow the photosensor package (510) to be directly referenced to reference surfaces (442, 446, 450, 452) formed on the optical assembly housing (200).
Abstract:
In a lens focusing and holding arrangement for an imaging system (60) including a photosensor array (510), the lens (570) is in contact with a reference surface or surfaces (274, 276) formed within the imaging system housing (200) and is translatable along the surface (274, 276) in directions toward and away from the photosensor array (510) in order to adjust the focus of the imaging system (60). A lens retention clip (600) is provided to secure the lens (570) within the imaging system housing (200) and to cause translational movement of the lens (570) along the imaging system reference surface (274, 276). When focusing the imaging system (60), the lens retention clip (600) is in a first operating condition in which the lens retention clip (600) applies a relatively small force tending to hold the lens (570) in contact with the housing reference surface (274, 276). After the desired focus has been set, the lens retention clip (600) is placed in a second operating condition in which the lens retention clip (600) applies a relatively high force tending to hold the lens (570) in contact with the housing reference surface (274, 276), thus locking the lens (570) in place.
Abstract:
A mirror support device arranged in both ends of a stick-like mirror for holding the mirror including an inner side plate, comprising a mirror insertion opening formed in the inner side plate, the mirror insertion opening for inserting an end of a mirror; an outer side plate connected to the inner side plate, comprising: a mirror stopper plate for regulating positions of a right and a left end face of the mirror inserted into the mirror insertion opening; and a clip hole, the mirror stopper plate and the clip hole being formed in the outer side plate; and a clip for fixing the mirror, the clip being inserted into the clip hole from a same direction as inserting direction of the mirror.
Abstract:
In an imaging system (60) of the type having a photosensor package (510) and at least one optical component (570), e.g., a lens, mounted within an optical assembly housing (200), the photosensor package (510) is mounted to a substrate (540), such as a printed circuit board, which has a shorter length than the photosensor package (510). This shorter length causes the ends of the photosensor package (510) to extend beyond the substrate (540) and, thus, be exposed. The exposed ends (524, 526) of the photosensor package (510), in turn, allow the photosensor package (510) to be directly referenced to reference surfaces (442, 446, 450, 452) formed on the optical assembly housing (200).