Abstract:
The image reading apparatus conveys a reading unit or a document to read the document. Conveyance is implemented by motor control based on a target position trajectory. The reading unit reads the document each time a line start signal is inputted. When a predetermined condition is satisfied, the reading operation is invalidated. A conveyance position at a timing to start the first reading operation invalidated is specified as an interrupted position. The object is arranged at a conveyance restart position moved back from the interrupted position. A target position trajectory is newly set. A conveyance time from the conveyance restart position to the interrupted position defined by the target position trajectory is an integral multiple of an output cycle of the line start signal. The motor control based on the target position trajectory is started at a timing coinciding with an output timing of the line start signal.
Abstract:
A camera module and a portable electronic device using same are provided. The camera module can be rotated to align with a first camera window and a first aperture in the front of the portable electronic device or a second camera window and second aperture in the rear of the portable electronic device.
Abstract:
An image reading apparatus includes a platen for placing the original, a reading device for reading the original placed on the platen to obtain image data in a first reading mode or a second reading mode; a transport device for transporting the original to be capable of returning the original to the platen; and a detection device for determining whether the image data read by the reading device is a first kind of data or a second kind of data. A control device operates the transport device for ejecting the original and outputting the image data read in the first reading mode when the image data is the first kind, and operates the transport device to return the original to the platen and actuates the reading device to read in the second reading mode when the image data is the second kind.
Abstract:
According to the present invention, highly accurate adjustment of the angles and positions of optical elements constituting an optical scanning unit can be easily performed.For a cylindrical lens that makes the light beam for exposing a photoreceptor converge on the surface of the photoreceptor, a frame is provided for holding the cylindrical lens therein. The frame is supported by two support portions for a chassis of the optical scanning unit such that the longitudinal direction of the cylindrical lens becomes parallel to the scanning direction of the photoreceptor. The optical scanning unit is configured such that the angle of the cylindrical lens in the longitudinal direction is adjustable in the sub-scanning direction of the photoreceptor at the support portion on the front side (operational side) of these support portions.
Abstract:
Methods and systems for calibrating media indexing errors in a printing device are provided. In one embodiment, the method comprises feeding a calibration media through a printing device, sensing the position of the media as it moves through the printing device, sensing positions of a media indexing component as the media moves through the printing device, determining media indexing position errors based upon the sensed positions, and calculating a compensation factor to be applied based upon the errors. In some embodiments, parameters of a line and/or other function are determined from the error data and the parameters are utilized to calculate a compensation factor. Moreover, in some embodiments, it is determined what range the data fits within, and a predetermined compensation factor is determined based upon the range.
Abstract:
A printer is provided with a scanner mounted to a printer main body includes control for suppressing the scanning speed of the carriage during a reading operation of a document image by a scanner. With this structure, the printer can perform an image forming operation at maximum speed and the time required for forming an image can be reduced while suppressing a reading inferior resulting from the vibrations generated from the carriage by suppressing such vibrations.
Abstract:
In one embodiment, at least one rotational reflection element is circulated such that one or more reflection surface sets is positioned along an optical path of a scanner. Circulation is provided by rotating a fixing element that is coupled to the rotational reflection element. The fixing element may comprise a power source and a fixing pin, whereinthe fixing pin is operable to fix a position of the rotational reflection element.
Abstract:
An image scan apparatus includes a scanner including: a document table on which a document is placed; a carriage which scans a read area of an image; a stepping motor which moves the carriage; an image processing unit which processes an image signal resulted from scanning by the carriage; a scanner controller which performs a process necessary to read the image; and memory which stores information, wherein on the document table, a sub-scan magnification adjustment chart which expresses a predetermined shape in order to calculate an actual sub-scan magnification by the scanner controller is placed. According to the image scan apparatus, when error occurs in the actual sub-scan magnification, the sub-scan magnification can be automatically adjusted without an operator performing the adjustment work of the magnification in the sub-scanning direction.
Abstract:
An optical scanning unit includes: a light source configured to emit a light beam; a lens arranged so that the light beam emitted from the light source passes therethrough; a rotatable deflector configured to deflect the light beam coming from the lens, the deflected light beam being guided to a light receiving member; a movable lens holder configured to hold the lens, the lens holder being provided in a space between the light source and the deflector; a support member having a first face located on a first side thereof, the first face facing toward a vertically-downward direction and extending in a direction substantially parallel to a reference-axis defined between the light source and the deflector, there also being a second face located on a second side, the second face being arranged opposite to the first face; and a force-transferring member configured to transfer a force to the lens holder for moving the lens holder along the first face of the support member, the force being applied to the force-transferring member at the second side of the support member.
Abstract:
A method of controlling the motion of a spinner in an imaging device is described. The spinner is rotatable at known angular velocity about an axis and moveable in a traverse direction along the axis. The method comprises: receiving an index pulse indicative of a rotational position of the spinner; synchronising the traverse movement of the spinner to the received index pulse; and moving the spinner in the traverse direction such that the spinner arrives at a predetermined target location with the spinner in a predetermined orientation for imaging.