Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
An image reading apparatus includes a platen glass on which a document is placed, a light source which irradiates the document with a light beam via the platen glass, an imaging element which receives the light beam reflected from the document, so as to output an image signal, and an illuminance adjusting mechanism which adjusts the illuminance on a light receiving surface of the document by varying a distance between the light source and the platen glass while maintaining the number of light sources.
Abstract:
The invention includes at least one mechanic adjusting device between the chassis of a scanner and the light base mounted with a light tube. The adjusting device is operated to adjust the position of the light tube to change the relative position with the document to be scanned. Thus, the purpose of adjusting the lightness accepted by the line to be scanned on the document to be scanned can be achieved.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
A light projecting device includes a base board, a light guiding member, a holding member, a cover, and a positioning member. A plurality of light-emitting elements are arranged in a line on the base board in a main scan direction. The light guiding member faces a radiation surface of the light-emitting elements and guides light projected from the light-emitting elements to an irradiation region of an illuminated object. The holding member holds the base board. The cover covers the base board and the light guiding member. The positioning member positions the light guiding member on the holding member. The holding member and the cover sandwich the light guiding member positioned by the positioning member. The light projecting device includes the holding member, the light guiding member, the base board, and the cover as a single unit which is detachably mountable relative to a chassis of the light projecting device.
Abstract:
A light irradiator including multiple point light sources arranged in a straight line, a light-transmissive light guiding member provided in front of the point light sources in an emission direction of beams of light emitted from the point light sources, the light guiding member guiding the beams of light in a predetermined direction toward a surface to be irradiated; and two or more protrusions protruding toward the point light sources, provided on a light entering surface of the light guiding member and arranged in the same direction as the point light sources. The light guiding member and the point light sources are positioned such that a distance between the protrusions provided to the light guiding member and irradiation surfaces of the point light sources is equal at two positions.
Abstract:
A protruding locking pawl is provided at an end of a light guide which corresponds to a first light input surface. A recessed locking portion is formed in a frame so that the locking pawl can be locked in the locking portion. A light blocking member is slidably loosely inserted into a position where the light blocking member covers a longitudinal end of the light guide which corresponds to a second light input surface. Even if expansion and contraction occurs in the longitudinal direction of the light guide, the design dimensions of a first gap A and a second gap B can be maintained; the first gap A is formed between the first light input surface and a first light source, and the second gap B formed between the second light input surface and a second light source. Therefore, possible leakage current can be prevented.
Abstract:
A light projection unit includes a substrate, a plurality of light emitting elements arrayed on the substrate in a main scanning direction and including light emitting surfaces, a light guide facing the light emitting surfaces to direct light projected from the light emitting elements onto an illumination target and including a first positioning portion, and a holder including a second positioning portion that engages the first positioning portion of the light guide to position the light guide on the holder. The first positioning portion of the light guide is positioned between centers of light emission of adjacent light emitting elements in the main scanning direction of the substrate when the first positioning portion engages the second positioning portion of the holder.
Abstract:
A light projecting device includes a base board, a light guiding member, a holding member, a cover, and a positioning member. A plurality of light-emitting elements are arranged in a line on the base board in a main scan direction. The light guiding member faces a radiation surface of the light-emitting elements and guides light projected from the light-emitting elements to an irradiation region of an illuminated object. The holding member holds the base board. The cover covers the base board and the light guiding member. The positioning member positions the light guiding member on the holding member. The holding member and the cover sandwich the light guiding member positioned by the positioning member. The light projecting device includes the holding member, the light guiding member, the base board, and the cover as a single unit which is detachably mountable relative to a chassis of the light projecting device.
Abstract:
An image reading device includes an illuminating means for illuminating a reading position through which a sheet conveyed by conveying means passes, optical reading means for reading reflected light of the sheet illuminated by the illuminating means when the sheet passes the reading position, a white reference plate disposed opposite to the optical reading means with the reading position sandwiched therebetween, and moving structure means for moving a placement position of the illuminating means based on a placement position of the white reference plate, and storage means is included for storing information in a searchable manner.