Abstract:
An electronic energy meter senses input voltage and current signals and processes them to generate a plurality of power measurements. The meter includes a processing system (14/16) for selecting one of the plurality of power measurements and for generating a pulsed test signal related to the selected power measurement for testing the operation of the meter, and an optical communications port (40) coupled to the processing system for transmitting the pulsed test signal from the meter to a testing device external to the meter.
Abstract:
high oleic acid triglyceride compositions that comprise fatty acid components of at least 75 % oleic acid, less than 10 % diunsaturated fatty acid component; less than 3 % triunsaturated fatty acid component; and less than 8 % saturated fatty acid component; and having the properties of a dielectric strength of at least 35 KV/100 mil gap, a dissipation factor of less than 0.05 % at 25 °C, acidity of less than 0.03 mg KOH/g, electrical conductivity of less than 1 pS/m at 25 °C, a flash point of at least 250 °C and a pour point of at least -15 °C are disclosed. Electrical insulation fluids comprising the triglyceride composition are disclosed. Electrical insulation fluids that comprise the triglyceride composition and a combination of additives are disclosed. Electrical apparatuses comprising the electrical insulation fluids and the use of electrical insulation fluids to provide insulation in electrical apparatuses are disclosed. A process for preparing the high oleic acid triglyceride composition is disclosed.
Abstract:
A numerical comparator (20) is disclosed. The numerical comparator (20) employs numerical techniques based upon the behavior of the cylinder unit (18) to compare phasors in real time. In one application of this invention, the torque signal generated by the numerical comparator, Mk+1, is employed to determine whether a fault has occurred in a transmission line. Another application involves employing the output Mk+1 to determine the direction of power flow in the transmission line. In yet another application, the output Mk+1 is used to determine whether a voltage or current has exceeded a predetermined threshold.
Abstract:
The movable nozzle (95) of a puffer circuit interrupter (15-17) has a coaxial cylindrical shield (110) connected to its downstream end and the main movable contacts (89) connected to its upstream end. The shield (110) is electrically connected to the stationary contact terminal (44). The movable contact ring (89) and coaxial shield (110) at the upstream end of the nozzle (95) define a well shielded open gap when the interrupter gap opens.
Abstract:
A steel plate (130) of area greater than the area of the output of a nozzle (95) in a puffer gas interrupter (15-17) is fixed to but is spaced from the downstream end of the nozzle (95) and causes turbulence in the hot interrupter gases flowing through the nozzle (95) to improve mixing with cooler downstream gas.
Abstract:
Méthode de mesure d'une tension non connue (VIN) mettant en oeuvre un réseau diviseur de tensions (R1, R2 et R3) de telle sorte que les incertitudes affectant les valeurs des résistances n'affectent pas la mesure. La tension non connue est divisée en trois tensions fractionnelles, les tensions fractionnelles sont mesurées et la tension non connue est calculée sur la base des tensions fractionnelles. La tension non connue est divisée par un diviseur de tensions comprenant une première résistance (R1), une deuxième résistance (R2) et une troisième résistance (R3), et une première tension (V01) est mesurée dans la première résistance, une deuxième tension (V02) est mesurée dans la deuxième résistance et une troisième tension (V03) est mesurée dans la troisième résistance. La tension non connue (VIN) est calculée sur la base des équations décrites dans le descriptif.
Abstract:
Apparatus (10) for interrupting the flow of current in a power distribution system is disclosed for use with an enclosure containing insulating fluid. The apparatus (10) includes a housing (20) formed from insulating material and having a mounting flange (28) formed along the exterior of the housing (20). The flange (28) is located so that the housing extends away from the mounting side and the upper side of the flange. An electrical current interrupter (16), having electrical input and output ends (16a, 16b), is positioned in the housing (20) so that a portion lies within the portion of the housing extending away from the flange mounting side. An actuator (12) is mechanically connected to the interrupter (16) to provide the mechanical actuation required to interrupt the current flow between the input and output ends of the interrupter. When the flange (28) is attached to the enclosure, the portion of the housing (20) extending away from the flange mounting side extends into the fluid within the enclosure.
Abstract:
An accurate impedance measurement method for a power system transmission line is disclosed for improving various protection functions, i.e., distance protection and/or fault location estimation. The method is less sensitive to harmonics and other transient problems introduced to power systems by series capacitance and the like, and is easily incorporated into existing protective relays. In the method, a number (n) of current and voltage samples (Ik, Vk) representative of values of current and voltage waveforms are measured, respectively, at successive instants of time on a conductor in a power system. The number n is an integer greater than l and the index k takes on values of 1 to n. Resistance (R) and inductance (L) values are computed in accordance with an equation in which R and L are related to sums of differences in values of successive current and voltage samples. A prescribed power system function is then performed based on the computed R and L values.