Abstract:
An electrochemical cell structure has an electrical current-carrying structure which, at least in part, underlies an electrochemical reaction layer. The cell comprises an ion exchange membrane with a catalyst layer on each side thereof. The ion exchange membrane may comprise, for example, a proton exchange membrane. Some embodiments of the invention provide electrochemical cell layers which have a plurality of individual unit cells formed on a sheet of ion exchange membrane material.
Abstract:
Portable electronic devices such as portable telephones, portable computers and the like may obtain power from fuel cells that consume fuel from fuel reservoirs of the portable devices. A network of fueling stations permits users of portable devices to main the devices operational by frequently topping up the fuel reservoirs. Payment systems combine payments for fuel with larger payments for other transactions to avoid the overhead of processing individual payments for very small amounts.
Abstract:
A fuel cell device including a fuel cell flashlight having a modular, interchangeable head portion. Additional modular head portions include circuitry connected with a connector in the head portion. The connector includes a USB type connector and the fuel cell device is suitable for charging other devices such as cell phones, PDAs, digital audio players, and the like.
Abstract:
A fuel cell device including a fuel cell flashlight having a modular, interchangeable head portion. Additional modular head portions include circuitry connected with a connector in the head portion. The connector includes a USB type connector and the fuel cell device is suitable for charging other devices such as cell phones, PDAs, digital audio players, and the like.
Abstract:
A fuel cell system including, among other things, one or more of a fuel cell, a fuel reservoir, a current collecting circuit, a plenum, or a system cover. The fuel reservoir is configured to store fuel, and may include a regulator for controlling an output fuel pressure and a refueling port. A surface of the fuel reservoir may be positioned adjacent a first fuel cell portion. The current collecting circuit is configured to receive and distribute fuel cell power and may be positioned adjacent a second fuel cell portion. The plenum may be formed when the fuel reservoir and the first fuel cell portion are coupled or by one or more flexible fuel cell walls. The system cover allows air into the system and when combined when a fuel pressure in the plenum, may urge contact between the fuel cell and the current collecting circuit.
Abstract:
A method for operating a passive, air-breathing fuel cell system is described. In one embodiment, the system comprises one or more fuel cells, and a closed fuel plenum connected to a fuel supply. In some embodiments of the method, the fuel cell cathodes are exposed to ambient air, and the fuel is supplied to the anodes via the fuel plenum at a pressure greater than that of the ambient air.
Abstract:
A fuel cell system including, among other things, one or more of a fuel cell, a fuel reservoir, a current collecting circuit, a plenum, or a system cover. The fuel reservoir is configured to store fuel, and may include a regulator for controlling an output fuel pressure and a refueling port. A surface of the fuel reservoir may be positioned adjacent a first fuel cell portion. The current collecting circuit is configured to receive and distribute fuel cell power and may be positioned adjacent a second fuel cell portion. The plenum may be formed when the fuel reservoir and the first fuel cell portion are coupled or by one or more flexible fuel cell walls. The system cover allows air into the system and when combined when a fuel pressure in the plenum, may urge contact between the fuel cell and the current collecting circuit.
Abstract:
The invention is a fuel cell made of a fuel plenum with fuel, an oxidant plenum with oxidant, a porous substrate communicating the fuel and oxidant plenum, a channel formed by the porous substrate, an anode, a cathode, electrolyte in a portion of the channel contacting the anode and the cathode preventing transfer of fuel to the cathode and preventing transfer of oxidant to the anode, a first coating to prevent fuel from entering a portion of the porous substrate, a second coating to prevent oxidant from entering a portion of the porous substrate, two sealant barriers, and a positive and negative electrical connection, wherein the invention also involves a multiple fuel cell layer structure, a bi-level fuel cell layer structure, and a method for making a fuel cell layer.