Abstract:
A method of controlling bandwidth allocation over a communications link comprising detecting, by a processor, a change in a power level of a composite signal transmitted by a transmitter, the composite signal comprising a plurality of carrier signals and having a constant center frequency and spectral allocation, adjusting at least one of a modulation factor and a forward error correction (FEC) rate of one or more of the plurality of carrier signals using a modulator, in response to the change in power level to maintain a predetermined data rate and spectral allocation of the composite signal, and maintaining, by the modulator, an uninterrupted communications link between the transmitter and a remote receiver while the at least one of the modulation factor and the FEC rate is adjusted.
Abstract:
A method of embedding information within a burst carrier signal, the method comprising modulating meta-data using a modulator such that a meta-carrier signal results, lowering a Power Spectral Density (PSD) of the meta-carrier signal by Direct Sequence Spread Spectrum (DSSS) chipping the meta-carrier signal using a linear Pseudo-Random Number (PRN) sequence, embedding one or more modulated symbols of the meta-carrier signal within an unused portion of one or more quadrants of a modulation constellation of a burst carrier signal such that a composite carrier signal results, and synchronously transmitting the composite carrier signal using a transmitter such that symbols of the meta-carrier signal are synchronized with symbols of the burst carrier signal.
Abstract:
A method of providing a recovery channel for a common transmission network of remote devices comprising encoding data that contains information about a primary carrier signal, modulating the encoded information, spreading, the modulated encoded information such that a secondary carrier signal results, combining, the spread secondary carrier with the primary carrier signal such that the spread secondary carrier signal occupies at least a portion of a bandwidth of the bandwidth pool, transmitting the combined primary and secondary carrier signals across a communications link having a plurality of remote carrier signals also being transmitted across the communications link to a remote receiver and sharing a same bandwidth pool (or multiple bandwidth pools), and reestablishing the communications link with the primary carrier signal after a loss of the communications link using the information about the primary carrier signal contained in the secondary carrier signal to recover one or more network configuration parameters.
Abstract:
A method of creating a pseudo hemispherical beam using a plurality of individual spot beams comprising receiving by a single router or packet processor, user data from a plurality of users, processing the user data by the single router or packet processor using a QoS logic such that a single output comprising a plurality of queues of data results, each queue of data comprising data designated for transmission only to one or more predetermined remote receivers, modulating the plurality of queues of data received using a multiple-carrier modulator such that a single output comprising a plurality of individual spot beams results, wherein each individual spot beam has a unique center frequency and carrier signal configuration, and transmitting the plurality of individual spot beams to a repeating relay configured to transmit each individual spot beam to the one or more predetermined remote receivers.
Abstract:
A method of provisioning a communications link between remote terminals within a hub-spoke network comprising receiving, by a first remote terminal, information about a second remote terminal from a hub, selecting, by the first remote terminal, a modulation factor, coding rate, symbol rate, center frequency, and power level based on the information received about the second remote terminal, transmitting, by the first remote terminal, a signal using at least one of the selected modulation factor, coding rate, symbol rate, center frequency, and power level, to the second remote terminal such that a communications link is created, and adjusting the modulation factor, coding rate, symbol rate, center frequency, or power level of the transmitted signal such that performance of the link is increased while maintaining a presence of the link.
Abstract:
A method of maintaining a data rate of a telecommunications link that involves, in a particular embodiment, modulating a carrier signal, encoding the carrier signal, and dynamically controlling a bandwidth of the carrier signal by changing a symbol rate of the carrier signal such that a data rate of the carrier signal remains substantially equal to a predetermined data rate when the carrier signal is transmitted to a remote receiver.
Abstract:
A method of embedding and transmitting a meta-data message in an original burst carrier signal for message reassembly comprising spreading a meta-carrier signal using a Direct Sequence Spread Spectrum (DSSS) spreading code having a Pseudo-Random Noise (PRN) spreading code sequence, the meta-carrier signal comprising one or more bits of meta-data information about the original burst carrier signal, lowering a power spectral density of the meta- carrier signal using the PRN spreading code such that interference with the original signal is reduced, combining the original burst carrier and the meta-carrier signals using a modulator such that a composite burst carrier signal results wherein the meta-carrier signal occupies at least a portion of a bandwidth of the original carrier, and transmitting the composite burst carrier using a transmitter over a telecommunications channel in which only one burst carrier signal is expected to be present within a predetermined frequency bandwidth at a point in time.
Abstract:
A method of signal distortion correction in a telecommunications channel, the method comprising modeling predicted signal distortion of an electromagnetic (EM) signal using one or more non-linearity model parameters of a signal distortion model, calculating and transferring one or more coefficients of the one or more non-linearity model parameters to a signal transmit location, pre-distorting the signal using an inverse function based on the one or more non-linearity model parameters, and transmitting the pre-distorted signal over the telecommunications channel containing a non-linear amplifier to a remote receiving device.
Abstract:
A method for remotely and dynamically controlling adjacent satellite interference comprising monitoring one or more off-axis signals emitted by one or more remote transmitters; determining whether one or more of the off-axis signals is creating adjacent satellite interference (ASI), off axis emissions and inband interference that is higher than a predetermined level of acceptable interference, and transmitting a control signal to at least one of the one or more remote transmitters in response to the determination that the one or more off-axis signals is creating interference that is higher than the predetermined level of acceptable interference, the control signal initiating an adjustment to one or more transmission parameters of the one or more remote transmitters such that interference resulting from the one or more off-axis signals emitted by the one or more remote transmitters is reduced or eliminated.