Abstract in simplified Chinese:一涡轮机燃烧器组合体包含燃烧器本体、及被配置在该燃烧器本体内之燃烧器衬里。该燃烧器衬里界定一具有头端及排放端的燃烧室。复数燃烧器喷嘴以环状数组被配置在该燃烧室之头端,且流体输送喷嘴实质上在该燃烧室之头端被中心地配置于该环状数组内。该流体输送喷嘴包含经过壁面部分延伸至第二端部的第一端部。该壁面部分包含至少一燃烧室出口。该流体输送喷嘴被建构成将不燃流体输送进入该复数燃烧器喷嘴之至少一者与该燃烧室。
Abstract in simplified Chinese:本发明提供形成碳同素异形体的方法及系统。一种范例方法包括处理碳质化合物而形成一种进料,该进料包括至少约10莫耳%的氧、至少约10莫耳%的碳、及至少约20莫耳%的氢。碳同素异形体系由该进料在一反应器中于至少约500℃的温度下以博希(Bosch)反应形成。从反应器流出物流中分离出该碳同素异形体。
Abstract in simplified Chinese:本发明系关于形成奈米碳管之方法及系统。一种包括于反应器中利用博希(Bosch)反应形成奈米碳管的方法。自反应器流出物中分离出奈米碳管,而形成废气流。将进气、干废气流、或二者以来自该废气流的废热加热。将该废气流于周温热交换器中冷却以使水蒸气凝结,而形成干废气流。
Abstract in simplified Chinese:本发明提供一种用于将天然气进料流液化之气体处理设备。该设备包含具有至少一个分馏容器之气体分离单元。该气体分离单元使用吸附性动力学分离之吸附剂床。该吸附剂床发佈富含甲烷之进料流。该设备也包括高压膨胀器循环冷冻系统。该冷冻系统使该富含甲烷之气体进料流压缩至高于约1,000 psia之压力。该冷冻系统也使该富含甲烷之进料流在一或多个冷却器中冷却,并接着使该冷却之气体进料流膨胀以形成液化产物流。本发明也提供使用AKS及高压膨胀器循环冷冻系统之将天然气进料流液化的方法。这样的方法能使用具有比习知设备轻质之设备而形成LNG。
Abstract in simplified Chinese:本发明提供于组合式低排放涡轮机系统中产生动力及从排气攫取及回收二氧化碳之系统、方法与设备。在一或多个具体例中,将来自多个涡轮机系统之排气组合、冷却、压缩及分离,得到含二氧化碳之流出物流及含氮之产物流。经再循环之排气流及产物流的部分可作为稀释剂,以调节在涡轮机系统的各燃烧器中之燃烧。
Abstract in simplified Chinese:本发明揭示接收液化天然瓦斯(LNG)及输送气化天然瓦斯至一与岸上设备流体连通的管线的方法与系统及输入LNG的方法。在一实施例中,一开放海域停泊液化天然瓦斯输入接收站包括一平台其被固定在海底(seafloor)上及包括两个或更多个停泊结构座。LNG载运船停泊在该开放海域停泊液输入接收站用以将LNG转送至系泊在停泊结构之一者处的贮存船。LNG汽化设施,不论是在贮存船或是在平台上,将LNG在输送至管线之前加以汽化。该贮存船可包括一驳船或另一LNG载运船。在其它实施例中,该开放海域停泊液化天然瓦斯输入接收站并没有存储设施,但两个LNG载运船可停泊在停泊结构用以同时进行卸货作业,其中一者转送LNG及另一者则实施其它卸货作业用以加强作业。
Abstract in simplified Chinese:本发明大致上有关用于在流体流动内测量结构之流体动态性质之测试设备及方法论。一具体实施例包含一种流体诱导运动之测试设备,该测试设备包含一适于在流体中固持测试本体之测试牵引机。该设备可包含以下组件之任何一种:一致动器,其适于在该测试本体上产生一力量;一乱流产生器,其位于由该测试本体向上动向之流体中,并适于越过该流体-测试本体界面产生具均匀之乱流强度之一乱流场,该乱流场包含主控漩涡状结构,该漩涡状结构之轴心大约平行于该测试本体之纵轴;或一测试本体调整器,其适于相对该流体动向于四或更多增量中调整该测试本体,借此能够使待测试之测试本体之多数航向反向朝着该流体之动向。本发明亦有关使用该测试设备及方法论设计及建造近海结构及使用所设计之近海结构生产碳化氢资源。
Abstract:
Solids dissolution may be promoted using a solvent blend comprising a disulfide solvent, particularly additional solids present in combination with elemental sulfur deposits. The solvent blends may comprise at least one disulfide solvent, at least one amine solvent, at least one ketone solvent, at least one ester solvent, and optionally water. Solids dissolution methods may comprise: identifying one or more solids in addition to elemental sulfur to be contacted by the solvent blend; adjusting a composition of the solvent blend to afford selectivity for dissolution of at least a portion of the one or more solids; and contacting the solvent blend with elemental sulfur and the one or more solids to promote at least partial dissolution thereof.
Abstract:
Aspects of the technology described herein identify geologic features within seismic data using modern computer analysis. An initial step is the development of training data for the machine classifier. The training data comprises an image of seismic data paired with a label identifying points of interest that the classifier should identify within raw data. Once the training data is generated, a classifier can be trained to identify areas of interest in unlabeled seismic images. The classifier can take the form of a deep neural network, such as a U-net. Aspects of the technology described herein utilize a deep neural network architecture that is optimized to detect broad and flat features in seismic images that may go undetected by typical neural networks in use. The architecture can include a group of layers that perform aspect ratio compression and simultaneous comparison of images across multiple aspect ratio scales.
Abstract:
A continuous thermal hydrogen compression system, and methods of thermally compressing hydrogen, are disclosed. A hydrogenation module accepts a hydrogen gas stream to be absorbed or adsorbed to a lean carrier stream through heat removal, thereby producing a heat output and a rich carrier stream containing absorbed or adsorbed hydrogen. A pump, connected to an output of the hydrogenation module, increases the pressure of the rich carrier stream to produce a pressurized rich carrier stream. A dehydrogenation module separates, via an addition of heat, a pressurized hydrogen gas stream from the pressurized rich carrier stream to produce a lean carrier stream. A pressure reducing device reduces the pressure of the lean carrier stream before it is returned to the hydrogenation module. The carrier stream is cycled continuously between the hydrogenation module and the dehydrogenation module.