Abstract:
A driving circuit for controlling power of a light-emitting diode (LED) light source includes a transformer, a switch controller, and a dimming controller. The transformer has a primary winding that receives input power from an AC/DC converter and a secondary winding that provides output power to the LED light source. The switch controller coupled between an optical coupler and the primary winding receives a feedback signal indicative of a target level of a current flowing through the LED light source from the optical coupler, and controls input power to the primary winding according to the feedback signal. The dimming controller coupled to the secondary winding receives a switch monitoring signal indicative of an operation of a power switch coupled between an AC power source and the AC/DC converter, and regulates the output power by adjusting the feedback signal according to the switch monitoring signal.
Abstract:
A stereoscopic image display device includes a back bezel, a backlight module disposed on the back bezel, a frame set surrounding and positioning the backlight module, and a liquid crystal panel receiving light emitted from the backlight module; wherein the liquid crystal panel is surrounded and supported by the frame set and has a transparent plate attached to the display surface of the liquid crystal panel. There is a stereoscopic image producing layer formed at a side of the transparent plate facing the display surface of the liquid crystal panel. The transparent plate, the frame set, and the back bezel constitute the outward appearance of the stereoscopic image display device.
Abstract:
A flush driving device for a toilet includes a mounting bracket, a control panel that includes a sensing window and manual buttons, and a manual operating mechanism that includes bars cooperating with the manual buttons and rotating mechanisms connected with the bars. Rotating shafts of the rotating mechanisms are mounted in the mounting bracket. An automatic operating mechanism includes a driving motor, a rod controlled by the driving motor, and lifting mechanisms cooperating with the rod. The flush driving device also includes pull arms connected to both the rotating mechanisms and the lifting mechanisms for controlling the flush of the toilet.
Abstract:
A switch includes a first switching member and a latch circuit. A first terminal of the first switching member is electrically connected to a power source, while a second terminal thereof is electrically connected to a loading. The latch circuit includes a first transistor and a second transistor which are mutually electrically connected. The first transistor is electrically connected to the first terminal, and the second transistor is electrically connected to the control terminal. By inputting a trigger voltage to the second transistor, the second transistor and the first switching member are conducted, which makes the first transistor become conductive. After the first transistor becoming conductive, the first transistor provides electricity to the second transistor to cause latching effect, and to consequently keep the first switching member conductive.
Abstract:
A hinge fixing structure includes a bezel whereon an opening is formed, and a cover whereon a slot is formed. The hinge fixing structure includes a hinge whereon a hole is formed, and a protrusion bolt. The protrusion bolt includes a fixing portion installed inside the slot on the cover in a tight fit manner, and a protruding portion connected to a side of the fixing portion and passing through the hole of the hinge. The hinge fixing structure further includes a screwing component for passing through the opening on the bezel and being screwed inside the protrusion blot at an end, so as to fix relative position of the bezel, the hinge and the cover.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a communication device having a controller to transmit to a communication system a PKI certificate, and engage in encrypted communications responsive to receiving a public key from the communication system. The communication system can have a plurality of network elements that integrate operations of a circuit-switched communication network and a packet-switched communication network. Other embodiments are disclosed.
Abstract:
Embodiments of the invention describe an enclosure for an image capture system that includes an image capture unit and a solid state die to provide focusing capabilities for a lens unit of the image capture unit. The enclosure may electrically couple the solid state die to the image capture unit and/or other system circuitry. The enclosure may further serve as EMI shielding for the image capture system.
Abstract:
A power supply apparatus for applying a method of supplying a loading with an electric power within a predetermined range of a default power, which includes a driving unit, a voltage sensing unit, and a feedback control unit. The driving unit receives power from a power source, and supplies the loading with a working voltage and a working current; the voltage sensing unit detects the working voltage; the feedback control unit keeps a plurality of reference voltages, wherein each two neighboring reference voltages are defined to have a voltage section therebetween. The feedback control unit sends a current signal to the driving unit according to the working voltage and a slope parameter of the voltage section which the working voltage falls in, and the driving unit supplies the working current according to the current signal to maintain the electric power in the predetermined range of the default power.
Abstract:
A method of driving LED chips, wherein the LED chips have different specifications, includes the steps of: A. defining a plurality of setting currents; B. connecting a LED chip; C. selecting one of the setting currents which matches a rated current of the LED chip; and D. providing power with the selected setting current to the LED chip. Whereby, the method could be applied to drive LED chips of several different specifications.
Abstract:
A transistor device and a manufacturing method thereof are provided. The transistor device includes a substrate, a first well, a second well, a shallow trench isolation (STI), a source, a drain and a gate. The first well is disposed in the substrate. The second well is disposed in the substrate. The STI is disposed in the second well. The STI has at least one floating diffusion island. The source is disposed in the first well. The drain is disposed in the second well. The electric type of the floating diffusion island is different from or the same with that of the drain. The gate is disposed above the first well and the second well, and partially overlaps the first well and the second well.