Abstract:
The present invention provides a flexible and convenient method that combines a digital color image with the versatility of an analog imaging method to create a hybrid digital/analog image, wherein an analog image is formed directly on a digitally generated image.
Abstract:
The present invention provides an initiator system including an infrared-absorbing compound, an initiator, and a metallocene compound. Upon exposure to infrared radiation, the initiator system is capable of producing radicals sufficient to initiate a photopolymerization reaction. Suitable infrared-absorbing compounds include indocyanine dyes. Trihalomethyl triazine compounds and onium compounds are suitable initiators. Suitable metallocene compounds include ferrocenes and titanocenes. The present invention also provides an infrared-sensitive composition including an ethylenically unsaturated polymerizable component, an infrared-absorbing compound, an initiator, and a metallocene compound. The infrared-sensitive composition provides improved photospeed and sensitivity in some embodiments. A printing plate precursor including an infrared-sensitive coating is also provided. The printing plate precursor exhibits enhanced shelf life in some embodiments. A method of making a printing plate precursor and a method for making a printable lithographic printing plate are further provided by the invention.
Abstract:
The present invention provides an initiator system including an infrared-absorbing compound, an initiator, and a metallocene compound. Upon exposure to infrared radiation, the initiator system is capable of producing radicals sufficient to initiate a photopolymerization reaction. Suitable infrared-absorbing compounds include indocyanine dyes. Trihalomethyl triazine compounds and onium compounds are suitable initiators. Suitable metallocene compounds include ferrocenes and titanocenes. The present invention also provides an infrared-sensitive composition including an ethylenically unsaturated polymerizable component, an infrared-absorbing compound, an initiator, and a metallocene compound. The infrared-sensitive composition provides improved photospeed and sensitivity in some embodiments. A printing plate precursor including an infrared-sensitive coating is also provided. The printing plate precursor exhibits enhanced shelf life in some embodiments. A method of making a printing plate precursor and a method for making a printable lithographic printing plate are further provided by the invention.
Abstract:
A radiation-sensitive patterning composition comprising: (1) at least one acid generating compound selected from compounds of formula (I) and formula (II) wherein: R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 , are independently selected from the group consisting of hydrogen, nitro, hydroxyl, carbonyl, halogen, cyano, unsubstituted and substituted alkyl groups, unsubstituted and substituted cycloalkyl groups; unsubstituted and substituted alkoxy groups, and unsubstituted and substituted aryl groups; wherein: X + is an onium ion selected from the group consisting of diazonium, iodonium, sulfonium, phosphonium, bromonium, chloronium, oxysulfoxonium, oxysulfonium, sulfoxonium, selenium, tellurium and arsenium; and n is an integer from 4 to 100; (2) at least one cross-linking agent cross-linkable by an acid; (3) at least one polymer compound capable of reacting with the cross-linking agent; and (4) at least one infrared absorbing compound.
Abstract:
The invention is directed to various calibration techniques for calibrating an imagining device such as a display device, a printer, or a scanner. The techniques may involve characterizing the imaging device with a device model such that an average error between expected outputs determined from the device model and measured outputs of the imaging device is on the order of an expected error, and adjusting image rendering on the imaging device to achieve a target behavior. The invention can achieve a balance between analytical behavior of the imaging device and measured output. In this manner, adjustments to image rendering may be more likely to improve color accuracy and less likely to overcompensate for errors that are expected.
Abstract:
In general, the invention provides scaling tools for compensating for scaling variations between two printing systems, such as an analog printing system and a digital printing system. An operator designates one of the systems as the reference printing system and the other printing system as the scalable printing system. The operator constructs a reference grid (10) with the reference printing system and a scaling grid (30) with the scalable printing system. By comparing the reference grid and the scaling grid, the operator finds one or more scaling factors (52, 66), which the operator may use to set the scale of the scalable printing system. The operator may print an image using the reference printing system and the scalable printing system, and the scalable printing system prints to the same scale as the reference printing system.
Abstract:
The present invention relates to printing plate coating compositions comprising: (a) a carbon pigment dispersible in water; (b) at least one polymer comprising at least one ionomeric polymer subunit; and (c) at least one high molecular weight thickening agent which shows pseudoplastic behavior. The printing plate precursor of this invention is prepared by coating a printing plate substrate with the coating composition.
Abstract:
A thermally imagable article comprises a substrate on which is coated a positive working heat-sensitive composition comprising a hydroxyl group-containing polymer and a heat-labile moiety which decreases the developer solubility of the composition as compared to the developer solubility of the composition without the heat-labile moiety, wherein the heat-sensitive composition does not comprise an acid generating moiety. The invention also provides novel positive working composition comprising heat-labile moieties, and imagable articles comprising said compositions.
Abstract:
A kit for making a relief image that includes a film made of an infrared-imageable material and a separate imageable article comprising a photosensitive material disposed on a substrate. The film may be used to form a mask image that is opaque to a curing radiation by exposing the infrared-imageable material to infrared radiation. The mask image may then be transferred to the photosensitive material. The resulting assembly may be exposed to the curing radiation resulting in exposed and unexposed areas of the photosensitive material. Finally, the photosensitive material and mask image may be developed with a suitable developer to form a relief image.
Abstract:
The present invention involves a method for making a relief image. A film that includes a carrier sheet and an imageable material is used to form a mask image that is opaque to a curing radiation. In one embodiment, the mask image is formed on the carrier sheet while in another embodiment, the mask image is formed on a receptor sheet. The mask image is then transferred to a photosensitive material, such as a flexographic printing plate precursor. The resulting assembly is exposed to the curing radiation resulting in exposed and unexposed areas of the photosensitive material. The carrier sheet or the receptor sheet may be removed from the mask image either before or after exposure to the curing radiation. Finally, the photosensitive material and mask image assembly is developed with a suitable developer to form a relief image.