Abstract:
Provided is a novel material used to introduce an exogenous substance into cells. Also provided is a method for introducing an exogenous substance into target cells using this material. The present invention provides an exosome that is used to introduce an exogenous substance into target cells, wherein the exosome contains one type or two or more types of an exogenous substance and a substance that induces macropinocytosis in the target cells. The present invention also provides a composition containing the exosome and a method for introducing an exogenous substance into cells using this exosome.
Abstract:
A metal powder contains not less than 0.10 mass % and not more than 1.00 mass % of at least one of chromium and silicon, and a balance of copper. The total content of the chromium and the silicon is not more than 1.00 mass %. In accordance with an additive manufacturing method for this metal powder, an additively-manufactured article made from a copper alloy is provided. The additively-manufactured article has both an adequate mechanical strength and an adequate electrical conductivity.
Abstract:
A state acquisition computer is provided that includes an interface configured to acquire data for indicating an inter-beat interval of an animal, and a processor configured to convert a Poincare plot of inter-beat intervals into a prescribed coordinate system, and based on a standard deviation of the Poincare plot after conversion, acquire information indicating a psychological state or a physical state of the animal.
Abstract:
A swallowing diagnosis apparatus includes a controller which enables a first swallowing determination process of determining whether or not there is an aspiration risk in the swallowing on the basis of respiratory phases before and after a period in which swallowing has been estimated as having occurred; and a second swallowing determination process of extracting reference information including at least one of the sound information and the respiration information in a predetermined period including the period in which swallowing has been estimated as having occurred, obtaining a feature quantity from the extracted reference information, and performing a machine learning process on the obtained feature quantity to determine whether or not there is a possibility of dysphagia in the swallowing; and a display control process of causing a determination result obtained by the first swallowing determination process and a determination result obtained by the second swallowing determination process to be displayed.
Abstract:
The present invention involves preparing compounds represented by the following formula: from a compound of the following formula: In these formulae: R1 represents a Br group, an iodine group, a Cl group, an NO2 group, or an NH2 group; R2 represents a halogen group, an NO2 group, an NH2 group, Sn(R6)3, N═N—NR7R8, OSO2R9, N R10R11, phenyliodonium, a heterocyclic group iodine, boric acid, or a borate ester; R30 represents a protective group PG1; R40 or R50 represent hydrogen, a protective group PG2, or C6H5(C6H5)C═N, in which NR40R50 are together.
Abstract:
There is provided a Ni-based intermetallic alloy having a dual multi-phase microstructure containing a primary precipitate L12 phase and an (L12+D022) eutectoid microstructure. Thus, the Ni-based intermetallic alloy contains Ni, Al, and V as basic elements, and the contents of Ni, Al, and V are controlled to form the dual multi-phase microstructure. The Ni-based intermetallic alloy further contains at least one of Zr and Hf in addition to the basic elements.
Abstract:
The present invention involves preparing compounds represented by the formula. (In the formula: R1 represents a Br group, an iodine group, a Cl group, an NO2 group, or an NH2 group; R2 represents a halogen group, an NO2 group, an NH2 group, Sn(R6)3, N═N—NR7R8, OSO2R9, NR10R11, phenyliodonium, a heterocyclic group iodine, boric acid, or a borate ester; R30 represents a protective group PG1; R40 or R50 represent hydrogen, a protective group PG2, or C6H5(C6H5)C═N, wherein NR40R50 are together.)
Abstract:
The present invention provides an organic metal complex having high heat resistance while making it possible to realize electroluminescence with high quantum efficiency as a light-emitting material for organic electroluminescent (EL) element. The present invention relates to an organic iridium complex for an organic EL element, wherein a C—N ligand including a substituent of a tricyclic-based structure obtained by condensing a heterocyclic ring and two benzene rings, and a β-diketone ligand composed of a propane-1,3-dione having two tert-butyl-substituted phenyl groups are coordinated with an iridium atom. The complex of the present invention has high heat resistance and contributes to lifetime prolongation of the organic EL element.
Abstract:
Satisfactory magnet torque is achieved while avoiding a reduction in the reluctance torque generated. The rotor core is provided with a plurality of magnet slots arranged in the circumferential direction of the rotor core and a gap formed of base holes and a projecting hole. The base holes extend from both ends in the circumferential direction of each magnet slot to the outer side of the rotor core. The projecting hole projects in the circumferential direction of the rotor core from at least one of peripheral portions, opposed to each other, of the base holes provided at both of the ends of the magnet slot, when viewed in an axial direction. The projecting hole is located closer to the magnet slot than to an outer peripheral side end of the base hole.
Abstract:
The purpose of the present invention is to provide a novel method for producing cereulide and a derivative thereof; an intermediate for cereulide; and a novel cereulide derivative. A novel didepsipeptide, a novel tetradepsipeptide, a novel octadepsipeptide and a novel dodecadepsipeptide are prepared. A linear precursor of cereulide or a derivative thereof, which is composed of any one of the novel depsipeptides, is cyclized by forming an intramolecular amide bond.