Abstract:
A method and system are provided for digitally injecting heat into a wide range of products by way of incorporation of a special class of semi-conductor lasers, e.g. surface emitting devices. This technique relates to a more specific, economical, and advantageous way of practicing the art of directly injecting narrowband radiant energy that desirously matches the absorption specification of a particular material at a specified wavelength.
Abstract:
A system for direct injection of selected, narrow bandwidth thermal- infrared (IR) radiation or energy into articles for a wide range of processing purposes is provided. The irradiation wavelengths are selected according to the specific absorption band characteristics of the target entity to create the desired efficiency of thermal transfer. The applications of the invention may include heating, raising or maintaining the temperature of articles, or stimulating a target item in a range of different industrial, medical, consumer, or commercial circumstances. The system is especially applicable to operations that require or benefit from the ability to irradiate at specifically selected mid-infrared wavelengths or to pulse or inject the radiation. The system is particularly advantageous when functioning at higher speeds and in a non-contact environment with the target.
Abstract:
This invention relates to a method and apparatus for handling parts ejected from an injection molding machine (10). More particularly, in one aspect, the invention is directed to a system (20) whereby data molded into the ejected part is used to provide useful feedback for the molding process. In another aspect, molded parts formed in a multiple molding die (12) are ejected from the die in a manner to maintain the relative sequential or matrix organization so that useful feedback information can be generated. This system is particularly useful with subsequent machine vision and inspection applications.
Abstract:
A stretch blow molding system that condition preforms such that the temperature distribution within the cross-section of each preform (10) is optimized prior to blow molding operations is provided. The system has a temperature measurement (20) and control system (30) capable of directly monitoring both the outside as well as inside surface temperature of preforms at different stages of transport throughout the thermal conditioning section (100) of the system.
Abstract:
This application relates to an apparatus and method for providing snapshot action thermal infrared imaging within automated process control article inspection applications. More specifically, it pertains to the use of snapshot mode lead salt area-array imaging sensors (20) as the imaging front-end in high-speed machine vision inspection systems (12). the relatively low-cost, good measurement sensitivity at temperatures consistent with thermo-electric cooling means, and the ability to be operated in snapshot mode enables lead salt-based image acquisition sensors (20) to be used in a variety of automated process control and article inspection applications.
Abstract:
Camera-based container inspection system is used in conjunction with a multiple station container forming device such as a blow molder (30) for bottle manufacturing. A seal surface inspection module (40), a base/neck fold inspection module (50), and a finish gauge inspection module (70) are integrated into the route of preforms (2) and bottles (4) through the container manufacturing equipment such that the inspection system is directed to view the passing preforms (2) and bottles (4) as they are carried on the transfer devices (20, 60) needed to load and unload the blow molder (30).
Abstract:
An engineered lighting system for high speed video inspection includes an array of light emitting diodes (10) including light emitting diodes for use in time delay integration (TDI) inspection of web materials (38). The light emitting diodes (10) of the array are selectively controllable to accomplish sequential illumination and carefully controllable imaging of a specified section (42) of a continuously moving specimen or specimens. LEDs with different wavelength light output, or multi-wavelength light LEDs are utilized for rapid and reliable inspection of surfaces with varying color or contour or detect characteristics. The system also includes an array of optional backlighting elements (26) to aid in illumination of semi-opaque specimens to accomplish inspection thereof.
Abstract:
A video inspection system includes first and second video cameras (36 and 48) mounted along a parallel axes. A lighting array (16) is pulsed, and resultant light is reflected from a specimen to both cameras. Orientation of the specimen is determined in accordance with an image generated from a first camera (36). This data is used to isolate a selected portion of the specimen for analysis by an image generated from the second camera (48).
Abstract:
Un système d'éclairage pour contrôle vidéo comprend un réseau tridimensionnel (22) de diodes électroluminescentes (18) focalisées sur une zone de contrôle. Une seule impulsion à courant élevé et de courte durée est appliquée à des éléments sélectionnés du réseau. La lumière ainsi générée est transmise à travers un diffuseur (26) vers un spécimen (D). La lumière réfléchie par le spécimen est reçue par un objectif (32) d'une caméra vidéo (34) disposée à l'intérieur d'un réseau tridimensionnel (22). Les données ainsi obtenues sont utilisées pour décider si le spécimen peut être accepté en fonction de normes présélectionnées.
Abstract:
A system for direct injection of selected thermal-infrared (IR) wavelength radiation or energy into articles for a wide range of processing purposes is provided. These purposes may include heating, raising or maintaining the temperature of articles, or stimulating a target item in a range of different industrial, medical, consumer, or commercial circumstances. The system is especially applicable to operations that require or benefit from the ability to irradiate at specifically selected wavelengths or to pulse or inject the radiation. The system is particularly advantageous when functioning at higher speeds and in a non-contact environment with the target.