Abstract:
One aspect of the present invention relates to a method and an apparatus for rinsing a substrate during a development process to mitigate pattern collapse. The apparatus includes a bath chamber; a substrate holder disposed in the bath chamber for holding the substrate having a resist pattern formed thereon; a first nozzle for dispensing a first rinsing solution having a first density and first surface tension into the bath chamber; a second nozzle for dispensing a second rinsing solution having a second density and second surface tension, which is less than the first rinsing solution, into the bath chamber; a drain disposed in a bottom portion of the bath chamber; and a controlling system operatively coupled to the first nozzle, the second nozzle and the drain designed to regulate and coordinate the operation of the first nozzle, the second nozzle and the drain.
Abstract:
A system and method for evaluating optical proximity corrected (OPC) designs is provided. The system includes an AFM measurement system for performing measurements relating to a segment of a feature pattern corresponding to a predetermined OPC mask feature. The measurement system is configured to determine a first image for the segment of the printed feature based upon the measurements. The measurement system compares the first image with another image corresponding to different OPC design to evaluate performance characteristics of the respective OPC designs.
Abstract:
In one embodiment, the present invention relates to a method of processing a photoresist on a semiconductor structure, involving the steps of exposing and developing the photoresist; evaluating the exposed and developed photoresist to determine if negative charges exist thereon; contacting the exposed and developed photoresist with a positive ion carrier thereby reducing any negative charges thereon; and evaluating the exposed and developed photoresist with an electron beam. In another embodiment, the present invention relates to a system for processing a patterned photoresist on a semiconductor structure, containing a charge sensor for determining if charges exist on the patterned photoresist and measuring the charges; a means for contacting the patterned photoresist with a positive ion carrier to reduce the charges thereon; a controller for setting at least one of time of contact between the patterned photoresist and the positive ion carrier, temperature of the positive ion carrier, concentration of positive ions in the positive ion carrier, and pressure under which contact between the patterned photoresist and the positive ion carrier occurs; and a device for evaluating the patterned photoresist with an electron beam.
Abstract:
A method of manufacturing a semiconductor device includes forming a second barrier layer over a first level, forming a first dielectric layer over the second barrier layer, forming a second dielectric layer over the first dielectric layer, etching the first and second dielectric layers to form an opening through the first dielectric layer and the second dielectric layer, and depositing an anti-reflective material in the opening at an optimal thickness. The optimal thickness is determined by minimizing a standard deviation of reflectivity of the anti-reflective material. After etching the first dielectric layer, the anti-reflective material can then be completely removed and the second barrier layer is etched to expose the first level. The trench and a via are then filled with a conductive material to form a feature.
Abstract:
One aspect of the present invention relates to a method of processing a semiconductor structure, involving the steps of providing a substrate having an insulation layer thereover; forming a first antireflection coating over the insulation layer; patterning a first resist over the antireflection coating; forming a plurality of vias in the insulation layer and the first antireflection coating, the vias having a first width; filling the via with a second antireflection coating, the second antireflection coating comprising a dye and a film forming material; patterning a second resist over the structure and removing the second antireflection coating from the via; forming a trench over the plurality of vias in the insulation layer, the trench having a width that is larger than the average width of the vias; and filling the trench and vias with a conductive material. The present invention provides improved dual damascene methods for substrates by using a developer soluble ARC containing a dye to facilitate the formation of trenches directly over the previously formed vias.
Abstract:
In one embodiment, the present invention relates to a method of processing an ultrathin resist, involving the steps of depositing the ultra-thin photoresist over a semiconductor substrate, the ultra-thin resist having a thickness less than about 3,000 Å; irradiating the ultra-thin resist with electromagnetic radiation having a wavelength of about 250 nm or less; developing the ultra-thin resist; and contacting the ultra-thin resist with a silicon containing compound in an environment of at least one of ultraviolet light and ozone, wherein contact of the ultra-thin resist with the silicon containing compound is conducted between irradiating and developing the ultra-thin resist or after developing the ultra-thin resist.
Abstract:
A method of forming either a gate pattern or a line pattern in a resist by using a dark field mask and a combination of a negative photoresist and a positive photoresist. The dark field mask is used to create a hole within the positive photoresist, by exposing only a portion of the positive photoresist to light, and then by subjecting the positive photoresist to a developer. The negative photoresist is formed within the hole of the positive photoresist, and etched or polished so that it is only disposed within the hole. The negative photoresist and the positive photoresist are subjected to a flood light exposure, and then to a developer. This causes the positive photoresist to dissolve, leaving the negative photoresist, thereby providing a very-small-dimension resist pattern that can be used to form either a gate or a line for a semiconductor device.
Abstract:
An interconnect structure and method of forming the same in which a first inorganic low k dielectric material is deposited over a conductive layer to form a first dielectric layer. An etch stop layer is formed on the first dielectric layer. The etch stop layer and the first dielectric layer are etched to form a slot via in the first dielectric layer. The slot via is longer than the width of a subsequently formed trench. A second low k dielectric material is deposited within the slot via and over the etch stop layer, to form a second dielectric layer over the slot via and the etch stop layer. The re-filled slot via is simultaneously etched with the second dielectric layer in which a trench is formed. The entire width of the trench is over the via that is etched. The re-opened via and the trench are filled with a conductive material.
Abstract:
A method of doubling the frequency of small pattern formation. The method includes forming a photoresist layer, and then patterning it. A RELACS polymer is spread over the patterned photoresist layer. Portions of the RELACS polymer on top portions of each patterned photoresist region are removed, by either etching or by polishing them off. Portions between each patterned photoresist region are also removed in this step. The patterned photoresist regions are removed, preferably by a flood exposure and then application of a developer to the exposed photoresist regions. The remaining RELACS polymer regions, which were disposed against respective sidewalls of the patterned photoresist regions, prior to their removal, are then used for forming small pattern regions to be used in a semiconductor device to be formed on the substrate. These small pattern regions can be used to form separate poly-gates.
Abstract:
A method is provided for manufacturing a semiconductor with fewer steps and minimized variation in the etching process by using SiON as a bottom antireflective (BARC) layer and hard mask in conjunction with a thin photoresist layer. In one embodiment, an etch-stop layer is deposited on a semiconductor substrate, a dielectric layer is deposited on top of the etch-stop layer, a BARC is deposited on top of the dielectric layer, and a photoresist layer with a thickness less than the thickness of the BARC is then deposited on top of the BARC. The photoresist is then patterned, photolithographically processed, and developed. The BARC is then etched away in the pattern developed on the photoresist and to photoresist is then removed. The BARC is then used as a mask for the etching of the dielectric layer and is subsequently removed in the process of etchings the dielectric and etch-stop layers without the benefit of a separate BARC-removal step.