Abstract:
본 발명은 이온교환막으로 전극활물질의 표면을 포위시키는 화학적 합성방법에 관한 것으로, 용매에 전극활물질이 섞인 전극활물질 슬러리에 pH조절제를 첨가하는 단계; 이온교환 능력을 지니는 단량체를 상기 슬러리에 첨가하는 단계; 및 상기 슬러리에 중합반응촉매를 첨가하는 단계를 포함한다.
Abstract:
본 기술은 금속지지체 표면 위에 성장 또는 코팅된 탄소나노튜브 구조체 관한 내용으로, 특히 금속지지체와 탄소나노튜브의 접촉 강도를 증대시키기 위한 방법을 제안에 관한 것이다. 상기와 같은 목적 달성을 위한 본 발명은 금속지지체 표면 위에 금속 성분을 함유하는 탄소나노튜브를 접촉시키는 단계; 탄소나노튜브 내부에 포함된 금속 성분과 금속지지체와의 반응을 개시하도록 탄성나노튜브가 접촉된 금속지지체를 열처리하는 단계; 및 열처리온도의 유지에 의해 두 금속 성분 사이에 생성된 금속간화합물 (intermetallic compounds)을 성장시키는 단계를 포함한다. 본 발명은 기존 나노기술에서 해결해야만 하는 가장 큰 문제점 중의 하나인 매크로 크기의 지지체와 나노물질 사의 열약한 접촉 강도를 크게 향상시킬 수 있는 방법을 제시할 수 있기 때문에, 다양한 구조의 나노-매크로 계층간 구조를 구성할 수 있어 다양한 응용 분야를 개척할 수 있을 뿐 아니라, 나노물질의 상용화에 크게 기여할 수 있을 것으로 기대된다.
Abstract:
The present invention relates to a hydrogen separation membrane and a method for producing the same, wherein diffusion between a porous support and a palladium-based metal separation membrane is controlled and adhesive force is applied to the porous support and the separation membrane at the same time. The hydrogen separation membrane according to the present invention comprises a porous support made of metal or ceramic material; a buffer layer made of ceramic material consisting of multiple columns that are formed on the porous support; and a palladium-based metal separation membrane that is formed on the buffer layer and can separate hydrogen. The buffer layer includes oxide-based ceramic material and can be formed in a plurality of layers, wherein the oxide-based ceramic material has an oxygen composition satisfying the inequality, 1
Abstract:
The present invention relates to a chemical synthesis method for surrounding the surface of an electrode active material with an ion exchange membrane, comprising: a step for adding a pH adjusting agent into an electrode active material slurry having a solvent mixed with the electrode active material; a step for adding a monomer having the ability to exchange ions into the slurry; and a step for adding a polymerization catalyst into the slurry.
Abstract:
The present invention relates to a method for producing an organic-inorganic hybrid ion exchange resin and a method for producing an ion exchange membrane using the same and, more specifically, to a method for producing an organic-inorganic hybrid ion exchange resin which can improve thermal-mechanical properties and a method for producing an ion exchange membrane using the same. The ion exchange resin according to the present invention is made up of oligomers having a wide range of distribution of molecular weight of 5,000 or less, so that problems involving occurrence of shrinkage due to the reduction in free volume in a process of producing an ion exchange membrane can be solved. In addition, the ion exchange membrane according to the present invention is characterized by a small difference in thermal expansion coefficients between before and after the glass transition temperature, thereby exhibiting superior thermal-mechanical properties in comparison to existing ion exchange membranes. Moreover, according to the present invention, organic-silane that can have two or three Si-O-Si bonds is selectively used to be able to adjust the flexibility of the ion exchange membrane.
Abstract:
The present invention relates to a highly efficient reverse electro-dialysis power generator using a spacer installed between an electrode and an ion-exchange membrane capable of increasing the efficiency of power generation. By the spacer, a turbulent flow is capable when salt water, fresh water, and an electrode-washing solution are flowed, increasing the contact between the turbulent flow and the ions to facilitate the ion movement and increase the amount of power generation. More specifically, the spacer installed on the electrode is coated with Pt. Therefore, a traditional electrode made of jewelry metals can be replaced with a titanium electrode.
Abstract:
본 발명은 반응분리동시공정에 의한 수소제조모듈 및 이를 이용한 수조제조반응기에 관한 것으로, 보다 상세하게는 제1개질촉매, 수소 분리막과 마주하는 제2 개질촉매를 포함하는 단위셀, 상기 단위셀 다수를 적층하고 내압챔버에 장착하여 고압 운전이 가능한 수소제조 장치를 제공한다. 상기 수소제조모듈은 탄화수소, 일산화탄소 및 알콜을 원료로 하여 수소를 제조할 수 있다. 특히, 개질촉매는 모두 다공성 금속 플레이트 형으로 구성하여 반응에 필요한 열전달 효과를 극대화한다. 반응물은 제1개질촉매를 투과 접촉하고, 이어서, 대향(對向)하는 수소분리막과 제2개질촉매의 간극을 통과하면서 반응과 동시에 수소를 분리한다. 이에 따라서, 반응온도의 평형전환율을 능가하는 고효율과 확보와 동시에 고순도 수소를 얻을 수 있다.
Abstract:
본 발명은 분리막여과부에 가해지는 압력에너지를 회수하여 증발농축부의 열에너지로 공급하는 것에 의해 제염담수장치의 에너지효율을 상승시키는 것과 동시에, 분리막 방식과 증발방식의 순차공정에 의하여 담수제염성능을 향상시킬 수 있는 복합 담수제염장치에 관한 것으로, 원수를 가압하여 공급하는 원수공급부; 상기 원수공급부로부터 공급된 원수를 분리막을 통해, 여과된 여과수와 비투과된 1차농축수로 분리하는 분리막여과부; 상기 분리막여과부에서 배출되는 1차농축수를 이용하여 회전되는 터빈을 가지는 HST; 및 상기 HST를 통과한 1차농축수를 증발시켜 응축된 응축수와 농축된 2차농축수로 분리하는 증발농축부를 포함하고, 상기 증발농축부의 증기배출구는 상기 HST의 증기압축기와 연결되고, 상기 HST에서는 상기 터빈의 회전력이 상기 증기압축기에 전달돼서 상기 증기배출구로부터 배출되는 증기를 가압하여 단열압축시켜 상기 증발농축부의 증기유입구로 공급하는 것을 특징으로 한다.
Abstract:
PURPOSE: A system for treating exhaust gas is provided to minimize or omit a device for reheating exhaust gas at the rear end of the process of treating exhaust gas by recovering moisture remaining in exhaust gas using a separation membrane. CONSTITUTION: A system for treating exhaust gas captures nitrogen oxide, sulfur oxide and carbon dioxide from the exhaust gas of a boiler, and discharges the chemical compounds through a stack (170). Moisture-recovering devices (350, 390) are installed on the fore-end of the stack to recover the moisture of the exhaust gas. The moisture-recovering devices include a housing, a negative-pressure chamber, and a separation membrane module. Either or both of the ends of the separation membrane module intercommunicate with the inside of the negative-pressure chamber. [Reference numerals] (110) Boiler; (120) Flue gas denitrogenization device; (130) Dust collector; (140) Flue-gas desulfurization device; (150) CO_2 collecting device; (160) Heater for re-heating; (170) Chimney; (350,390) Moisture collecting device; (AA) Air for oxidation; (BB) Slurry; (CC) Make-up water; (DD) MEA make-up solution; (EE) Absorbed amount washing solution; (FF) Discharge gypsum; (GG) Discharge including CO_2
Abstract:
PURPOSE: A production method of a composite metal oxide catalyst for producing methanol is provided to produce the copper-zinc oxide-alumina-zirconium oxide composite metal oxide catalyst for synthesizing methanol, and to maximize the performance of the composite metal oxide catalyst by controlling the concentration of zirconium oxide and the pH of a coprecipitation solution. CONSTITUTION: A composite metal oxide catalyst for producing methanol contains 50-60 mol% of copper, 20-30 mol% of zinc oxide, 5-10 mol% of alumina, and 10-20 mol% of zirconium oxide. A production method of composite metal oxide catalyst for producing methanol comprises the following steps: producing metal salt solutions using copper nitrate, zinc nitrate, aluminum nitrate, and zirconium nitrate precursors (S100); measuring and mixing each metal salt solution (S200); adding an alkali precipitation agent into the missed metal salt solution after heating and stirring to obtain a precipitated catalyst (S300); aging the solution with the precipitated catalyst, and filtering and washing (S400); plasticizing the catalyst (S500); and increasing the temperature of the plasticized catalyst under the hydrogen/nitrogen flow for reducing (S600). [Reference numerals] (S100) Step of producing each metal salt solution by using copper nitrate, zinc nitrate, aluminum nitrate, and zirconium nitrate precursors; (S200) Step of measuring and mixing each metal salt solution; (S300) Step of adding an alkali precipitation agent into the missed metal salt solution after heating and stirring to obtain a predicated catalyst; (S400) Step of aging the solution with the predicated catalyst, and filtering and washing; (S500) Step of plasticizing the catalyst; (S600) Ste of increasing the temperature of the plasticized catalyst under the hydrogen/nitrogen flow for reducing