Abstract:
The present invention relates to a cathode material for a non-aqueous lithium secondary battery using spherical porous cobalt oxide and a manufacturing method thereof. The lifetime characteristics of the final cathode material can be improved by inhibiting the structural collapse of the final cathode material at a high voltage because the spherical porous cobalt oxide including nanosized titanium dioxide uniformly is manufactured using a sedimentation reaction in a liquid state. According to the present invention, the spherical cobalt oxide in a size of 5 to 25 μm can be manufactured by the sedimentation of a cobalt material, a hydroxyl group material, a dissimilar metal material for substitution and an ammonia material so as to have a composition ratio of Co1-xTix(OH)2 (0.00
Abstract:
The present invention relates to a composite oxide-based cathode active material for a magnesium secondary battery represented by Mg_yMA_2O_7-zC_z and a magnesium secondary battery comprising the same. The cathode active material for a magnesium secondary battery of the present invention has a new structure in which polyanions form a framework and magnesium ions are chemically or electrochemically inserted or separated to/from a channel or a tunnel existing between the framework formed by the polyanions so as to not only improve electroconductivity by facilitating the movement of magnesium ions among particles but also express relatively high stability, a long lifespan and excellent thermal properties in comparison with an existing magnesium secondary battery of which the crystalline structure collapses during the movement of the magnesium ions.
Abstract:
The present invention provides a cathode active material for a magnesium secondary battery which is represented by the chemical formula: MgxMnySiO4 (1
Abstract translation:本发明提供一种镁化合物的正极活性物质,它由化学式为Mg x Mn x Si 4(1≤x≤1.2,0.8≤y≤1.0)表示,并且其表面被碳覆盖。 根据本发明的用于镁二次电池的正极活性材料具有涂覆有碳的表面,以便抑制颗粒的生长并形成均匀的颗粒,具有高的表面积以促进离子在颗粒之间移动并提高导电性 通过提高包含镁二次电池用正极活性物质的电极的结构稳定性,提高了镁二次电池的初期容量和高速率特性。
Abstract:
본 발명은 마이크로 캡슐화된 소화 조성물 및 그를 갖는 리튬 이차 전지에 관한 것으로, 표면이 열가소성 수지층으로 코팅된 형태로 제공됨으로써 내부에 존재하는 소화 조성물의 방출 온도를 조절할 수 있는 효과가 있고, 크기가 마이크로 사이즈로 매우 작아서 소화 작용이 필요한 리튬 이차 전지를 포함하는 여러 분야에 다양하게 적용될 수 있도록 하기 위한 것이다. 본 발명에 따른 마이크로 캡슐화된 소화 조성물은 소화 조성물 및, 소화 조성물의 외부에 형성되는 열가소성 수지층을 포함하며, 열가소성 수지층은, 열가소성의 단독중합체 또는 공중합체로 형성되며, 단독중합체는 하나의 단량체의 중합에 의해 형성되며, 공중합체는 적어도 두 개 이상의 단량체의 중합에 의해 형성되며, 단량체는 에틸렌기를 포함하는 것을 특징으로 한다.
Abstract:
The present invention relates to a negative active material for lithium ion capacitor, a manufacturing method thereof, and a lithium ion capacitor including the same in which the output and life characteristics of the lithium ion capacitor can be improved by reforming the surface of a carbon-based material with carbonyl. According to the present invention, the negative active material for lithium ion capacitor, the carbon-based material surface-reformed with the carbonyl, is manufactured by applying an ultrasonic energy to a mixture after preparing the mixture with the carbon-based material impregnated with an H2O2 solvent. When the negative active material according to the present invention is applied to a lithium ion capacitor, the output and life characteristics thereof can be improved. [Reference numerals] (AA) Carbonyl
Abstract:
PURPOSE: A positive electrode material has high sphericity, has extremely low specific surface area, and prevents side-reactions with electrolyte solution at high temperatures. CONSTITUTION: A positive electrode material includes spherical cobalt hydroxide which is manufactured by coprecipitating an aqueous solution mixed of a cobalt raw material, a hydroxide raw material, a heterometal raw material for substitution, and amine raw material. The cobalt hydroxide has a composition ratio represented by Co_(1-x)M_x(OH)_2 where x is 0.00
Abstract:
PURPOSE: A manufacturing method of a secondary battery is provided to be able to secure the thickness control and the structural stability by using a screen coating process or a spray coating process. CONSTITUTION: A manufacturing method of a secondary battery comprises a step of manufacturing slurry for a cathode electrode (100) and slurry for an anode electrode (200); a step of forming the cathode electrode and the anode electrode by coating the slurry for the cathode electrode and the slurry for the anode electrode on a corresponding cathode current collector (120) and an anode current collector (220) by using a screen printing process or a spray coating process; and a step of forming a secondary battery having the cathode electrode and the anode electrode. The cathode electrode and the anode electrode have the thickness of 30 micron or less.
Abstract:
본 발명은 전기화학 에너지 저장장치용 분리막 및 그의 제조 방법에 관한 것으로, 전기화학 에너지 저장장치의 온도 상승시 고온안정성을 도모하면서, 고분자 분말의 용해에 의해 기공이 막히는 셧다운 기능을 향상시키기 위한 것이다. 본 발명에 따른 에너지 저장장치용 분리막은 부직포 형태의 베이스 필름 및, 베이스 필름의 표면에 형성되되, 세라믹 분말, 고분자 분말 및 고분자 바인더로 이루어진 코팅층을 포함한다.
Abstract:
PURPOSE: A carbon-graphite-metal composite-based bipolar plate is provided to improve corrosion resistance while having low specific resistance and to improve energy efficiency and life time of a redox flow secondary battery. CONSTITUTION: A carbon-graphite-metal composite-based bipolar plate comprises 10-20 wt% of carbon-based material, 45-77 wt% of graphite-based material, 1-25 wt% of metal, 8-18 wt% of a resin, 3.99-10 wt% of a curing agent, 0.01-2 wt% of a curing accelerator. The metal is selected from a group consisting of aluminum, copper, nickel, iron, manganese, iridium and platinum. The carbon-based material has an average particle size of 10 micron or less and the graphite-based material has an average particle size of 50 micron or less. A redox flow secondary battery comprises the carbon-graphite-metal composite-based bipolar plate(50).
Abstract:
본 고안은 엑스선(X-ray) 회절 측정용 인시추 셀(in-situ cell)에 관한 것으로, 전지의 분해 없이 충방전을 행하면서 전극에 엑스선을 조사하여 얻어지는 회절 상을 이용하여 전극의 구조 변화를 측정하기 위한 것이다. 본 고안에 따르면, 전기 전도성을 갖는 설치판은 중심 부분에 판 상의 베릴리움 윈도우가 삽입되어 탑재되고, 베릴리움 윈도우 위에 전지가 삽입되어 탑재되는 삽입홈이 형성되어 있고, 삽입홈의 중심 부분에 엑스선이 입사될 수 있는 개방부가 형성되어 있다. 전기 전도성을 갖는 셀 몸체는 설치판의 상부에 결합되어 전지 외곽의 베릴리움 윈도우를 밀폐하며, 중심 부분에 전지가 노출되는 관통 구멍이 형성되어 있다. 링 형상의 절연성 고정 부재는 셀 몸체 상부의 관통 구멍에 일부가 삽입되어 탑재된다. 전기 전도성을 갖는 전지 고정 로드는 일부가 셀 몸체의 관통 구멍을 통하여 삽입되어 전지를 탄성적으로 눌러 고정하며, 셀 몸체의 관통 구멍을 통하여 삽입되는 부분은 절연성 고정 부재에 의해 셀 몸체의 관통 구멍 내주면에서 이격되게 설치된다. 그리고 고정 캡은 전지 고정 로드를 통하여 셀 몸체의 외측면에 체결되면서 절연성 고정 부재를 전지 고정 로드와 셀 몸체의 관통 구멍 사이로 밀어넣어 전지 고정 로드와 셀 몸체를 서로 밀폐되게 고정한다.