Abstract:
본 발명은 구형의 수산화코발트를 이용한 비수계 리튬이차전지용 양극재료에 관한 것으로, 액상에서의 침전반응을 이용하여 이종금속이 균일하게 치환되어 있는 구형의 수산화코발트를 제조함으로써 최종 양극재료의 고전압에서의 구조 붕괴를 억제하여 수명특성을 향상시키기 위한 것이다. 본 발명에 따르면, 코발트원료, 수산화기원료, 치환용 이종금속원료 및 아민계원료를 화학식, Co 1-x M x (OH) 2 (0.00
Abstract:
본 발명은 마그네슘 이차전지용 양극 재료의 제조 방법 및 이에 의하여 제조된 마그네슘 이차전지용 양극 재료에 관한 것으로서, 더욱 상세하게는 표면이 탄소로 코팅된 쉐브렐 구조의 마그네슘 이차전지용 양극재료의 제조 방법 및 이에 의하여 제조된 쉐브렐 구조의 마그네슘 이차전지용 양극재료에 관한 것이다. 본 발명에 의한 마그네슘 이차전지용 양극재료의 제조 방법은 쉐브렐 구조의 양극활물질의 표면을 탄소로 균일하게 코팅함으로써 입자의 성장을 억제하여 균일한 입자를 형성시키고, 높은 표면적을 가지게 되어 쉐브렐 구조 내로의 마그네슘 이온의 확산 속도를 높이게 되어 전기 전도성이 향상될 뿐만 아니라, 코팅된 탄소가 전하이동 네트워크를 형성하여 이와 같은 마그네슘 이차전지용 양극재료를 포함하는 전극의 구조적 안정성을 개선시키고, 마그네슘 이차 전지의 초기용량 및 고율특성 등을 향상시키게 된다.
Abstract:
The present invention relates to a positive electrode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a positive electrode active material for a lithium secondary battery in which a positive electrode material in which the surface of a nickel-rich (Ni-rich) positive electrode active material is coated with manganese phosphate is provided for improved battery characteristics, and a method for manufacturing the same. According to the present invention, the surface of the nickel-rich (Ni-rich) positive electrode active material is uniformly coated with the manganese phosphate, and thus an electrolyte side reaction is suppressed. Accordingly, a lithium secondary battery having excellent output characteristics, high-temperature life characteristics, and thermal stability can be manufactured.
Abstract:
The present invention relates to an anode material for a lithium secondary battery, coated with silicon oxide and a method for manufacturing the same. More specifically, by providing an anode material coated with silicon oxide on a Ni-rich anode material, the present invention relates to an anode material for a lithium secondary battery having remarkably enhanced thermal stability and cell performance due to the silicon compound. According to the present invention, silicon oxide is evenly coated on the surface of the Ni-rich anode material, thus enabling a user to manufacture a lithium secondary battery having excellent cycle and output properties while having an effectively improved thermal stability due to the suppressing of a negative reaction of an electrolyte.
Abstract:
The present invention relates to a positive electrode for magnesium rechargeable batteries and magnesium rechargeable batteries comprising the same and more specifically, to a positive electrode for magnesium rechargeable batteries and magnesium rechargeable batteries comprising the same which uses polytetrafluoroethylene as a binder, and which uses an excessive amount of conductive material for the masses of both poles, so as to possess a high capacity and a long lifespan.
Abstract:
The present invention provides a cathode active material for a magnesium secondary battery and a manufacturing method thereof, wherein the cathode active material is represented by a chemical formula (Mg_xMn_1-yCo_ySiO_4 (0.5
Abstract:
PURPOSE: A manufacturing method of a positive electrode material manufactures a positive electrode material with improved lifetime and having a particle size of 20 micron or greater in order to obtain high energy density. CONSTITUTION: A manufacturing method of a positive electrode material comprises a step of manufacturing spherical cobalt hydroxide by coprecipitating an aqueous solution including a cobalt raw material, a hydroxide raw material, a hetero metal raw material for substitution, and an amine raw material (S10); and a step of manufacturing cobalt oxide substituted with heterometal by heat-treating the cobalt hydroxide. In manufacturing cobalt hydroxide, the cobalt hydroxide has the composition ratio of Co_(1-x)M_x(OH)_2 where 0.00
Abstract translation:目的:为了获得高能量密度,正极材料的制造方法制造寿命更长且粒径为20微米以上的正极材料。 构成:正极材料的制造方法包括通过共沉淀包含钴原料,氢氧化物原料,取代用异质金属原料和胺原料的水溶液来制造球形氢氧化钴的步骤(S10) ; 以及通过热处理氢氧化钴制造用异金属取代的氧化钴的步骤。 在制造氢氧化钴时,氢氧化钴的组成比为Co_(1-x)M_x(OH)2,其中0.00 <= x <= 0.10,M是Al,Mg或Ti。 氢氧化钴的平均粒度为15-30微米。 (附图标记)(AA)开始; (BB)结束; (S10)通过共沉淀包含钴原料,氢氧化物原料,用于置换的异质金属原料的水溶液和胺原料来制造高密度球形氢氧化钴; (S20)通过在500-800℃热处理氢氧化钴生产用异金属取代的高密度氧化钴; (S30)通过在900-1100℃下将氧化钴与Li 2 CO 3和Li 2 CO 3混合,生产钴酸锂,阳极材料; (S40)通过粉碎经热处理的阳极材料进行配制