Abstract:
A golf ball comprising a core and a cover layer, wherein at least one of the core or cover layer comprises a plasticized polyurethane composition comprising at least one polyurethane and at least one plasticizer.
Abstract:
Multi-layered golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The specific gravity (density) of the foam inner core is preferably less than the density of the outer core layer. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
Golf balls comprising a multi-layer core and a cover are disclosed. The multi-layer core comprises at least three layers, including at least one thermoset layer and at least one thermoplastic layer. At least one core layer has a plurality of projections disposed thereon.
Abstract:
The present invention generally relates to golf balls and more particularly to golf balls having multi-layered cores comprising a thermoset rubber center, a thermoplastic intermediate core layer, and a thermoset rubber outer core layer. A cover layer is disposed about the multi-layered core. At least one of the center, intermediate core layer, and outer core layer comprises a polyalkenamer rubber. In one preferred embodiment, the center, intermediate core, and outer core layers have positive hardness gradients. The core layers preferably have different specific gravities. The polyalkenamer rubber may be blended with other rubbers such as polybutadiene, polyisoprene, ethylene propylene diene, and styrene-butadiene rubbers. The polyalkenamer rubber composition helps improve resiliency of the core and provides the ball with a comfortable and soft feel.
Abstract:
Multi-layered golf balls having a core made of a foamed polyurethane composition are provided. The ball includes a dual-layered core having a foam inner core (center) and surrounding outer core layer. The outer core layer may be made from a non-foamed thermoset material such as polybutadiene rubber. The ball further includes an inner cover, preferably made from a thermoplastic ionomer. The outer cover may be made from a non-foamed thermoset or thermoplastic material such as polyurethane. The core and inner cover layers preferably have different densities so the Moment of Inertia of the ball is adjusted. Preferably, the specific gravity of the inner cover is greater than the specific gravity of the outer core, which is greater than the specific gravity of the inner core. The finished ball has good distance and low-spin properties.
Abstract:
Golf balls having a very high positive gradient multilayer core are provided. The multilayer core includes an outer core layer and a very soft, low compression inner core layer. The inner core layer is formed from an unfoamed composition and has a center hardness that is at least 40 Shore C points less than the outer surface hardness of the outer core layer.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer ionomer resin; and the outer core layer is preferably formed from a thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
The present invention generally relates to golf balls and more particularly to golf balls having multi-layered cores comprising a thermoset rubber center, a thermoplastic intermediate core layer, and a thermoset rubber outer core layer. A cover layer is disposed about the multi-layered core. At least one of the center, intermediate core layer, and outer core layer comprises a polyalkenamer rubber. The polyalkenamer rubber may be blended with other rubbers such as polybutadiene, polyisoprene, ethylene propylene diene, and styrene-butadiene rubbers. The polyalkenamer rubber composition helps improve resiliency of the core and provides the ball with a comfortable and soft feel.
Abstract:
A golf ball comprising a single layer core formed from a substantially homogenous formulation and comprising a geometric center and an outer surface; a hardness of the outer surface is greater than a hardness of the geometric center. An inner core region is disposed about the geometric center and has a first hardness that is less than those of the geometric center and the outer surface; an outer core region is adjacent the outer surface and has a second hardness that is greater than those of the geometric center and the outer surface; and an intermediate core region is disposed between the inner and outer core regions and extends radially from about 5 mm to about 15.75 mm from the geometric center and has at least a third hardness and a fourth hardness, each of which are related to the first hardness and the second hardness in various ways.
Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.