Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from non-foamed thermoset compositions such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-piece golf balls having a solid core and cover are provided. The ball contains a small, heavy inner core and surrounding outer core layer. The inner core preferably contains metal materials such as copper, steel, brass, tungsten, titanium, nickel, iron, tin, and bronze particles dispersed in a thermoset or thermoplastic polymeric matrix. Preferably, the polymeric matrix comprises polybutadiene rubber. The outer surface of the inner core preferably has a non-uniform structure and includes projecting members. For example, the outer surface may contain multiple projecting ribs with gaps located between the ribs. The ball includes a cover surrounding the core structure. The cover may be multi-layered.
Abstract:
The present invention relates to golf balls having at least one layer formed from a very neutralized polymer composition. In particular, the compositions of the invention include at least one acid copolymer and a sufficient amount of cation source to neutralize about 70 percent to about 80 percent of the acid moieties. The invention also relates to methods of making the compositions and golf ball constructions that incorporate the compositions of the invention in at least a portion thereof.
Abstract:
The invention relates to golf balls having at least one layer formed from a highly-neutralized polymer material that has been crosslinked. In particular, the compositions of the invention include a highly-neutralized polymer, at least one crosslinking initiator, and at least one coagent. The invention also relates to methods of making the compositions and golf ball constructions that incorporate the compositions of the invention in at least a portion thereof.
Abstract:
Golf ball multi-layered core sub-assemblies and the resulting golf balls are provided. The core structure includes a foam inner core (center); and intermediate and outer core layers. Foamed polyurethane is preferably used to make the inner core. The intermediate and outer core layers are preferably made from non-foamed thermoplastic compositions such as ethylene acid copolymer ionomer. In an alternative version, the intermediate core layer may be made of a thermoset rubber such as polybutadiene. The core layers have different hardness and specific gravity levels. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-piece golf balls containing a multi-layered core structure are provided. The core structure includes a small, heavy inner core (center) having a relatively high specific gravity, an intermediate core layer, and a surrounding outer core layer. The layers of the core structure may have different hardness gradients. In one preferred embodiment, each core layer has a positive hardness gradient. The center of the core comprises a metal material such as copper, steel, brass, tungsten, titanium, aluminum, and alloys thereof. The intermediate core layer is preferably formed from a thermoset composition such as polybutadiene rubber, and the outer core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer. The resulting ball has high resiliency and good spin control.
Abstract:
Multi-piece golf balls containing a multi-layered core structure are provided. The core structure includes a small, heavy inner core (center) having a relatively high specific gravity, an intermediate core layer, and a surrounding outer core layer. The layers of the core structure may have different hardness gradients. In one preferred embodiment, each core layer has a positive hardness gradient. The center of the core comprises a metal material such as copper, steel, brass, tungsten, titanium, aluminum, and alloys thereof. The intermediate core layer is preferably formed from a first thermoset composition such as polybutadiene rubber, and the outer core layer is preferably formed from a second thermoset composition. The resulting ball has high resiliency and good spin control.
Abstract:
Golf balls having multi-layered covers are provided. The cover includes an inner cover layer made of an ionomer composition; an intermediate cover layer made of an aromatic polyurethane composition; and outer cover layer made of an aliphatic polyurethane composition, wherein the total thickness of the multi-layered cover is no greater than 0.110 inches. Preferably, the thickness of the inner cover layer is 0.010 to 0.050 inches; the thickness of the intermediate cover layer is 0.010 to 0.040 inches; and thickness of the outer cover layer is 0.004 to 0.020 inches. The invention also includes methods for making such multi-layered covers. The resulting ball has good light-stability, cut/shear-resistance, and impact durability.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoplastic composition such as ethylene acid copolymer ionomer. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-piece golf balls containing a dual-layered core structure are provided. The core structure includes a small, heavy inner core (center) having a relatively high specific gravity, and a surrounding outer core layer. The layers of the core structure may have different hardness gradients. The center of the core comprises a metal material such as copper, steel, brass, tungsten, titanium, aluminum, and alloys thereof dispersed in a thermoset polymeric matrix. The outer core layer is preferably formed from a thermoplastic composition such as an ethylene acid copolymer ionomer resin. The resulting ball has high resiliency and good spin.