Abstract:
Multi-layered golf ball core sub-assemblies and the resulting golf balls are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The intermediate and outer core layers are preferably formed from foamed and non-foamed thermoset compositions. For example, the intermediate core can be formed from a thermoset rubber so there are adjoining foam core layers (inner and intermediate) and the outer core layer can be formed from a non-foamed thermoset rubber. The core layers have different hardness and specific gravity levels. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
Golf ball and method for making it, comprising a first layer that comprises a first polymeric composition and is surrounded by and adjacent to a second layer comprising a second polymeric composition different than the first polymeric composition; with one of these layers further comprising at least one silane-containing adhesion promoter such as organosilanes and/or organosiloxanes throughout in an amount of from about 0.1 wt. % to about 5.0 wt. % of the entire layer. Neither layer is surface treated with at least one silane-containing adhesion promoter. The second layer may be the layer comprising the silane-containing adhesion promoter throughout, surrounded by a third layer that comprises a third polymeric composition that differs from the second polymeric composition and does not incorporate any silane-containing adhesion promoter. Strong interlayer bonding is therefore created both between the second layer and the first layer and between the second layer and the third layer.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoplastic composition such as ethylene acid copolymer ionomer. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-piece golf balls having a solid core made of a foamed composition and a cover are provided. Preferably, the core is dual-layered having has a foam inner core (center) and surrounding thermoset or thermoplastic outer core layer. Preferably, a polyurethane foam composition containing mineral filler particulate, for example, nanoclay particles, is used to form the foam center. The concentration of clay particulate is preferably in a range of 0.1 to 60% by weight. The surrounding outer core layer may be made from non-foamed or foamed compositions. For example, polybutadiene rubber or highly neutralized olefin acid copolymers may be used in the outer core layer. The core layers have different hardness gradients and specific gravity values.
Abstract:
Compositions for golf balls that include polyurethane and polyurea linkages and that are crosslinked in the soft segments of the polymer backbone. In particular, the compositions of the invention, which are based on a polyurethane and/or polyurea prepolymers, have improved crosslink density from the crosslinking between the soft, unsaturated segments of the polymer backbone. The curative blend includes at least one isocyanate-reactive component and a free radical initiator.
Abstract:
Multi-layered golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoset composition such as polybutadiene rubber. The core layers have different hardness and specific gravity levels. The specific gravity (density) of the foam inner core is preferably less than the density of the outer core layer. The core assembly preferably has a positive hardness gradient extending across the entire assembly. The core structure and resulting ball have relatively good resiliency.
Abstract:
Disclosed herein are polyurethane golf ball compositions. The compositions are prepared by adding a UV absorber to a polyol prior to reacting the polyol with an isocyanate to form a prepolymer, which is then reacted with a curing agent to form the polyurethane.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoset composition such as polybutadiene rubber. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.
Abstract:
Multi-layered golf balls having a core made of a foamed polyurethane composition are provided. The ball includes a dual-layered core having a foam inner core (center) and surrounding outer core layer. The outer core layer may be made from a non-foamed thermoset material such as polybutadiene rubber. The ball further includes an inner cover, preferably made from a thermoplastic ionomer. The outer cover may be made from a non-foamed thermoset or thermoplastic material such as polyurethane. The core and inner cover layers preferably have different densities so the Moment of Inertia of the ball is adjusted. Preferably, the specific gravity of the inner cover is greater than the specific gravity of the outer core, which is greater than the specific gravity of the inner core. The finished ball has good distance and low-spin properties.
Abstract:
Multi-piece golf balls containing a dual-core structure are provided. The core structure includes an inner core (center) comprising a foam composition, preferably foamed polyurethane. The outer core layer is preferably formed from a non-foamed thermoplastic composition such as ethylene acid copolymer ionomer. Preferably, the specific gravity (density) of the foam inner core is less than the density of the outer core layer. The ball further includes a cover of at least one layer and may include at least one casing layer. The core structure and resulting ball have relatively good resiliency.