Abstract:
Context-specific user interfaces for use with a portable multifunction device are disclosed. The methods described herein for context-specific user interfaces provide indications of time and, optionally, a variety of additional information. Further disclosed are non-transitory computer-readable storage media, systems, and devices configured to perform the methods described herein.
Abstract:
Techniques for configuring context-specific user interfaces for use with a portable multifunction device are disclosed. The context-specific user interfaces provide indications of time and, optionally, a variety of additional information. The methods provided herein allow for configuring such user interfaces, e.g., at a first electronic device coupled via wireless communication to a second electronic device. Further disclosed are non-transitory computer-readable storage media, systems, and devices configured to perform the methods described herein.
Abstract:
A method of establishing communications with a first device is disclosed. The method includes: the first device presenting connection information to a second device; receiving a response from a second device; establishing an association with the second device; transmitting, in response to a determination that the first device and the second device are connected for data, first data to the second device, the first data comprising addressing information for a server; receiving second data from the second device, the second data comprising second information for establishing communications with the first device; and configuring the first device to receive third data from a location remote to the first device using the second information from the second data.
Abstract:
At an electronic device with a touch-sensitive display, a remote camera control user interface may be displayed. In some examples, a user may provide input through a gesture at a location corresponding to the touch-sensitive display and/or through a rotation of a rotatable input mechanism to control a camera of an external device. Camera control may include control of the external device's camera features, including image capture, zoom settings, focus settings, flash settings, and timer settings, for example, and may also include access to the external device's library of previously captured images.
Abstract:
Methods for sharing user-configurable graphical constructs, e.g., for use with a portable multifunction device, are disclosed. The methods described herein allow for sharing user-configurable graphical constructs, such as context-specific user interfaces and emoji graphical objects that contain independently configurable graphical elements. Further disclosed are non-transitory computer-readable storage media, systems, and devices configured to perform the methods described herein.
Abstract:
Systems and processes for manipulating a graphical user interface are disclosed. One process can include receiving user input through a crown to rotate a virtual object. The process includes selecting a surface of the object from among the multiple surfaces of the object in response to determining that the crown rotation exceeded a speed threshold.
Abstract:
The present disclosure relates to user interfaces for manipulating user interface objects. A device, including a display and a rotatable input mechanism, is described in relation to manipulating user interface objects. In some examples, the manipulation of the object is a scroll, zoom, or rotate of the object. In other examples, objects are selected in accordance with simulated magnetic properties.
Abstract:
The present disclosure relates to manipulating a user interface on a wearable electronic device using a mechanical crown. In some examples, the user interface can be scrolled or scaled in response to a rotation of the crown. The direction of the scrolling or scaling and the amount of scrolling or scaling can depend on the direction and amount of rotation of the crown, respectively. In some examples, the amount of scrolling or scaling can be proportional to the change in rotation angle of the crown. In other examples, a speed of scrolling or a speed of scaling can depend on a speed of angular rotation of the crown. In these examples, a greater speed of rotation can cause a greater speed of scrolling or scaling to be performed on the displayed view.
Abstract:
An electronic device with a touch-sensitive display can detect a contact with the display, and in response to detecting the contact, the device can display a user interface screen representing a corresponding application. The user interface screen can include an affordance for launching the application, and a set of information obtained from the application, where the set of information is updated in accordance with data from the application.
Abstract:
An electronic device with a touch-sensitive display can obtain a plurality of alerts associated with dates and times. The device can detect a user input, and in response to the input display a notification interface. The notification interface can include a future notification representing a future alert with a date and time after the current date and time, and a past notification representing a past alert with a date and time before the current date and time. The future and past notifications can be separated by a graphical separator that has an indication of the current time. The future and past alerts correspond to different installed applications.