Abstract:
An ablation device includes a handle assembly including a distal end and a probe extending distally from the distal end of the handle assembly. The probe includes a heat-transfer portion and at least one fluid-flow path in fluid communication with the heat-transfer portion. The handle assembly includes at least one fluid reservoir in fluid communication with the at least one fluid-flow path and at least one apparatus configured to cause fluid flow between the at least one fluid reservoir and the heat-transfer portion. The probe is configured to apply thermal energy released by an exothermic chemical reaction that occurs when fluid from the at least one fluid reservoir is caused to flow to the heat-transfer portion.
Abstract:
A device for directing energy to a target volume of tissue includes an inner conductor having a length and an outer conductor coaxially surrounding the inner conductor along the length. The outer conductor has a proximal portion and a distal portion. The distal portion of the outer conductor is provided with a number of apertures N defined therein for radiating energy, where N is an integer greater than 1, each aperture having a size and extending at an angle relative to a longitudinal axis of the outer conductor. At least one of the size and the angle of each aperture is varied in relation to the other apertures N−1 such that the energy radiated along the distal portion is substantially uniform.
Abstract:
A system for monitoring ablation size is provided and includes a power source including a microprocessor for executing at least one control algorithm. A microwave antenna is configured to deliver microwave energy from the power source to tissue to form an ablation zone. An ablation zone control module is in operative communication with memory associated with the power source. The memory includes one or more data look-up tables including one or more electrical parameter associated with the microwave antenna. The one or more electrical parameters corresponding to an ablation zone having a radius. The one or more electrical parameters include a threshold value, wherein when the threshold value is met the power source is adjusted to form an ablation zone of suitable proportion.
Abstract:
A surgical probe includes a connection hub, an antenna assembly, and an outer jacket. The antenna assembly is coupled to the connection hub, extends distally from the connection hub, and includes a radiating portion coupled thereto at the distal end thereof. The radiating portion is configured to deliver energy to tissue to treat tissue. The outer jacket is coupled to the connection hub, extends distally therefrom, and is disposed about the radiating portion. The outer jacket includes a distal end member configured to be spaced-apart from the radiating portion a target axial distance. One or more of the couplings between the antenna assembly and the connection hub, the radiating portion and the antenna assembly, and the outer jacket and the connection hub defines a flexible configuration permitting axial movement therebetween to maintain the target axial distance between the radiating portion and the distal end member.
Abstract:
An ablation probe fixation apparatus for securing an ablation probe to tissue includes a base having a top surface and a skin-contacting bottom surface, wherein the base includes an adhesive layer disposed on the skin-contacting bottom surface. The fixation apparatus also includes a fixation member coupled to the top surface of the base. The base and the fixation member include an aperture defined therein for insertion of the ablation probe therethrough.
Abstract:
An electrosurgical instrument is provided and includes a housing configured to connect to a source of bipolar electrosurgical energy and an electrode body coupled to the elongated housing. The electrode body includes an electrode face, first and second bipolar electrodes and a blade. The electrode face is formed on the distal end of the electrode body and includes a longitudinal axis and a transverse axis therethrough. The first and second electrodes have a leading edge and a trailing edge, are formed on opposite sides of the longitudinal axis and connect to opposed electrical potentials. The blade is positioned between the electrodes with at least a portion of the blade extending beyond the electrode face.
Abstract:
A microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween. A radiating portion is also included having an unbalanced dipole antenna including a proximal portion and a distal portion that are of different lengths. The proximal portion includes at least a portion of the inner conductor and the inner insulator and the distal portion includes a conductive member.
Abstract:
A tubular member for a laparoscopic microwave ablation instrument includes a proximal portion, a distal portion, and an intermediate portion interposed between the proximal portion and the distal portion. A maximum outer diameter of the proximal portion is greater than or equal to a maximum outer diameter of the intermediate portion. The maximum outer diameter of the intermediate portion is greater than or equal to a maximum outer diameter of the distal portion. And the maximum outer diameter of the proximal portion is greater than the maximum outer diameter of the distal portion.
Abstract:
A method for ablation zone detection includes delivering microwave energy to tissue at a treatment location by way of an ablation device, delivering ultrasound energy to the tissue by way of an ultrasound device, receiving, from a plurality of respective portions of the tissue by way of the ultrasound device, a plurality of ultrasound return signals that are based on the delivered ultrasound energy, detecting, in the plurality of ultrasound return signals, a plurality of respective Doppler shifts that are based on the microwave energy delivered to the tissue, determining an ablation zone characteristic based on the plurality of Doppler shifts, and displaying, by way of a graphical user interface, an image representing at least a portion of the tissue and a representation of the ablation zone characteristic.
Abstract:
An energy-delivery device suitable for delivery of energy to tissue includes an antenna assembly, a chamber defined about the antenna assembly, and a cable having a proximal end suitable for connection to an electrosurgical energy source. The energy-delivery device also includes a flexible, fluid-cooled shaft coupled in fluid communication with the chamber. The flexible, fluid-cooled shaft is configured to contain a length of the cable therein and adapted to remove heat along the length of the cable during delivery of energy to the antenna assembly.