Abstract:
An apparatus and method are described for asynchronous tile-based rendering control. In one embodiment of the invention, there is a delay between when the graphics driver queues the GPU commands for rendering and when the GPU begins executing. During this delay, the graphics driver receives additional information or data about whether cache evictions may be inhibited. As such, it allows the graphics driver to defer the cache eviction control of its render cache until it has this extra information. By doing so, it reduces the memory bandwidth required for rendering 3D graphics applications and in turn reduces the power consumption of the GPU.
Abstract:
Systems, apparatuses and methods may provide for technology that determines a stencil value and uses the stencil value to control, via a stencil buffer, a coarse pixel size of a graphics pipeline. Additionally, the stencil value may include a first range of bits defining a first dimension of the coarse pixel size and a second range of bits defining a second dimension of the coarse pixel size. In one example, the coarse pixel size is controlled for a plurality of pixels on a per pixel basis.
Abstract:
Apparatus and method for bottom-up BVH refit. For example, one embodiment of an apparatus comprises: a hierarchical acceleration data structure generator to construct an acceleration data structure comprising a plurality of hierarchically arranged nodes; traversal hardware logic to traverse one or more rays through the acceleration data structure; intersection hardware logic to determine intersections between the one or more rays and one or more primitives within the hierarchical acceleration data structure; a node unit comprising circuitry and/or logic to perform refit operations on nodes of the hierarchical acceleration data structure, the refit operations to adjust spatial dimensions of one or more of the nodes; and an early termination evaluator to determine whether to proceed with refit operations or to terminate refit operations for a current node based on refit data associated with one or more child nodes of the current node.
Abstract:
Systems, apparatuses and methods may provide for technology that determines a frame rate of video content, sets a blend amount parameter based on the frame rate, and temporally anti-aliases the video content based on the blend amount parameter. Additionally, the technology may detect a coarse pixel (CP) shading condition with respect to one or more frames in the video content and select, in response to the CP shading condition, a per frame jitter pattern that jitters across pixels, wherein the video content is temporally anti-aliased based on the per frame jitter pattern. The CP shading condition may also cause the technology to apply a gradient to a plurality of color planes on a per color plane basis and discard pixel level samples associated with a CP if all mip data corresponding to the CP is transparent or shadowed out.
Abstract:
Systems, apparatuses and methods may provide for technology that determines a stencil value and uses the stencil value to control, via a stencil buffer, a coarse pixel size of a graphics pipeline. Additionally, the stencil value may include a first range of bits defining a first dimension of the coarse pixel size and a second range of bits defining a second dimension of the coarse pixel size. In one example, the coarse pixel size is controlled for a plurality of pixels on a per pixel basis.
Abstract:
Systems, apparatuses and methods may provide away to enhance an augmented reality (AR) and/or virtual reality (VR) user experience with environmental information captured from sensors located in one or more physical environments. More particularly, systems, apparatuses and methods may provide a way to track, by an eye tracker sensor, a gaze of a user, and capture, by the sensors, environmental information. The systems, apparatuses and methods may render feedback, by one or more feedback devices or display device, for a portion of the environment information based on the gaze of the user.
Abstract:
Described herein is a partitionable graphics processor having multiple render front ends. The partitions of the graphics processor maintain render functionality when partitioned and enable fault isolation and independent multi-client rendering.
Abstract:
Described herein is a partitional graphics processor having multiple hard partitions with separate software execution and fault domains. One embodiment provides a graphics processor comprising a system interface and a plurality of graphics processing resources coupled with the system interface. The plurality of graphics processing resources is configurable to be partitioned into a plurality of isolated device partitions, each isolated device partition configured for fault isolation and independent concurrent execution of workloads associated with a plurality of clients, and the system interface is configured to present each of the plurality of isolated device partitions as a virtual function.
Abstract:
Embodiments described herein provided for an instruction and associated logic to enable a processing resource including a tensor accelerator to perform optimized computation of sparse submatrix operations. One embodiment provides hardware logic to apply a numerical transform to matrix data to increase the sparsity of the data. Increasing the sparsity may result in a higher compression ratio when the matrix data is compressed.
Abstract:
Real time ray tracing-based adaptive multi frequency shading. For example, one embodiment of an apparatus comprising: rasterization hardware logic to process input data for an image in a deferred rendering pass and to responsively update one or more graphics buffers with first data to be used in a subsequent rendering pass; ray tracing hardware logic to perform ray tracing operations using the first data to generate reflection ray data and to store the reflection ray data in a reflection buffer; and image rendering circuitry to perform texture sampling in a texture buffer based on the reflection ray data in the reflection buffer to render an output image.