Abstract:
Various embodiments are described which can serve to mitigate interference between the control channel signaling of adjacent sectors/cells. Potentially, these techniques may have the benefit of reducing the system resource drain caused by control channels, particularly control channels in high frequency-reuse, OFDMA systems. A transmitting device (101) transmits primary control channel information to a plurality of user devices (102). The primary control channel information includes an indication that a first OFDMA resource region (e.g., 320 or 330) is assigned to at least one user device of the plurality of user devices. The transmitting device correspondingly transmits secondary control channel information to the at least one user device using the first OFDMA resource region.
Abstract:
Various embodiments are described which can serve to mitigate interference between the control channel signaling of adjacent sectors/cells. Potentially, these techniques may have the benefit of reducing the system resource drain caused by control channels, particularly control channels in high frequency-reuse, OFDMA systems. A transmitting device (101) transmits primary control channel information to a plurality of user devices (102). The primary control channel information includes an indication that a first OFDMA resource region (e.g., 320 or 330) is assigned to at least one user device of the plurality of user devices. The transmitting device correspondingly transmits secondary control channel information to the at least one user device using the first OFDMA resource region.
Abstract:
Various embodiments are described to address the need for an apparatus and method of outer-loop power control for enhanced uplink communications that address some of the outstanding problems in the prior art. Generally expressed, a base site (131), while a first uplink channel is inactive, monitors packet retransmissions to generate an uplink quality indicator. Here, packet retransmissions refers to the number of packet retransmissions used by a remote unit (101) to send packets to a base transceiver station (111) via at least one other uplink channel. Also, while the first uplink channel is inactive, the base site adjusts a signal-to-interference ratio (SIR) target for the first uplink channel based on the uplink quality indicator. Then, when the first uplink channel becomes active, the base site begins power controlling the first uplink channel using the SIR target.
Abstract:
During operation radio frames are divided into a plurality of subframes. Data is transmitted over the radio frames within a plurality of subframes, and having a frame duration selected from two or more possible frame durations.
Abstract:
The present invention provides a method of scheduling asynchronous transmissions for a plurality of subscriber units (12). The method includes receiving (305) information associated with a plurality of subscriber units that have uplink data to transmit, the information including uplink timing offset information associated with each of the subscriber units (12). Two or more subscriber units (12) are then selected (310) from a set of subscriber units having a timing offset differential, that is below a predetermined threshold, where the timing offset differential is the difference between the timing offset of a first subscriber unit and the timing offset of a second subscriber unit further selectively offset by a multiple of the transmission segment size, which minimizes the difference. The transmission segments, which are available for the uplink of data, are then allocated (315) between the selected two or more subscriber units (12), which limits the number of transmission segments that have at least one of an overlap or a gap, and the amount of any overlap or gap, in order to minimize wasted scheduling opportunities.
Abstract:
A method for rate selection by a communication device for enhanced uplink during soft handoff in a wireless communication system includes a first step of receiving information from a scheduler. This information can include one or more of scheduling, a rate limit, a power margin limit, and a persistence. A next step includes determining a data rate for an enhanced uplink during soft handoff using the information. A next step includes transmitting to a serving base station on an enhanced uplink channel at the data rate determined from the determining step.
Abstract:
A communication system optimizes cell edge performance and spectral efficiency by a first step (404) of measuring, by the Node B, at least one system performance metric. A next step (406) includes sending, by the Node B, an indicator for the at least one system performance metric measurement. A next step (408) includes receiving the indicator for the at least one system performance metric measurement. A next step (410) includes determining an adaptive power control parameter based on the at least one system performance metric measured by the Node B and system performance metrics measured by at the least one other neighboring Node B. A next step (412) includes using the adaptive power control parameter to update an uplink transmit power level for at least one user equipment served by the Node B.
Abstract:
A system and method for initializing a system communication without previous reservations for random access channel (RACH) access includes a first step of defining at least one spread sequence derived from at least one constant amplitude zero autocorrelation sequence. A next step includes combining the spread sequence with a Walsh code to form an extended spread sequence. A next step includes using the extended spread sequence in a preamble for a RACH. A next step includes sending the preamble to a BTS for acquisition. A next step includes monitoring for a positive acquisition indicator from the BTS. A next step includes scheduling the sending of a RACH message. A next step includes sending the RACH message.
Abstract:
A communication system (100) provides downlink acknowledgments corresponding to uplink transmission using hybrid automatic repeat request to multiple users (101, 102) in an Orthogonal Frequency Division Multiplexing communication system, wherein a frequency bandwidth comprises multiple frequency sub-carriers, by spreading (804) each acknowledgment of multiple acknowledgments with a selected spreading sequence of multiple spreading sequences to produce multiple spread acknowledgments, wherein each acknowledgment is intended for a different user of the multiple users, and distributing (810) the multiple spread acknowledgments across the multiple frequency sub-carriers.
Abstract:
Embodiments described herein address the desire to have a method for uplink rate control signaling that is able to achieve increased sector and user throughput with relatively high uplink spectrum efficiency. Rate control signaling embodiments are disclosed that use two common persistence values (404, 408) to update the allocated portion of RoT margin for each UE device, and thus, reduce the variation of the RoT. In addition, SHO information is used to control the inter-sector/cell interference and improve the sector throughput. In such embodiments, each UE determines (412) the data rate and time to transmit according to these common persistence values, SHO status and buffered data. Throughput comparable to that of time and rate schedulers, which require significantly more signaling and information, can be achieved by some of these embodiments while also exhibiting less sensitivity to delay, speed of the UE, and burstiness of the traffic.