Abstract:
Provided are a transmission device and transmission method that are capable of allowing leeway in data reception processing on the receiving side regardless of the position in time of a resource region to which control information, which is contained in resource allocation information for transmission data, is mapped. A setting unit (101) sets a mapping region, which maps a DCI in accordance with the downlink data size that the DCI indicates, from among a PDCCH region, an R-PDCCH region in slot 0, and an R-PDCCH region in slot 1 that are provided in order in the time direction within a subframe. In a setting rule table used in setting the mapping region, PDCCH region, R-PDCCH region in slot 0, and R-PDCCSH region in slot 1 are associated with maximum size value of a downlink data size that the DCI indicates and that can be set in each resource region.
Abstract:
To effectively use transmission power by changing the arrangement of unused REGs. A wireless communication apparatus according to the invention corresponds to a wireless communication apparatus for performing wireless communication with a terminal equipment via a relay station, which includes an allocator which allocates CCEs in which control signals for the relay station are arranged to a plurality of REGs so that unused REGs not allocated with the CCEs differ among respective resource blocks each having the plurality of REGs, and a transmitter which transmits the control signals arranged in the CCEs allocated to the REGs to the relay station in accordance with an allocation by the allocation section.
Abstract:
A radio communication apparatus of the present invention aims at improving an error rate characteristic in the end receiver. A repeater (radio relay device) RS2 receives a signal transmitted from a repeater RS1 at a point of time of signal transmission from the repeater RS1, and detects whether or not an error exists in the signal at a point of time of transmission. Also, when the repeater RS2 detects the error from a systematic bit S of the transmitted signal from the repeater RS1, such repeater RS2 generates error position information EI, replace a part of a parity bit P with the error position information El, and transmits a resultant signal. The error detection result is notified through the control channel. The mobile station (mobile terminal) MS makes an error correction based on the error position information El, and demodulates the signal by executing an error correction decoding process.
Abstract:
Provided is a terminal device with which deterioration in hybrid automatic repeat request (HARQ) retransmission performance can be inhibited by continuing a downlink (DL) HARQ process for DL data before and after changing the uplink link-DL configuration. In this device, a decoder (210) stores, in a retransmission buffer, DL data transmitted from a base station, and decodes the DL data, and a wireless transmitter (222) transmits a response signal generated using a DL-data-error detection result. A soft buffer is partitioned into a plurality of regions for each retransmission process on the basis of the highest values among retransmission process numbers respectively stated in a plurality of configuration patterns which can be set in the terminal (200).
Abstract:
Provided are a terminal device and a retransmission control method that make it possible to minimize increases in overhead in an uplink control channel (PUCCH), even if channel selection is used as the method to transmit response signals during carrier-aggregation communication using a plurality of downlink unit bands. On the basis of the generation status of uplink data and error-detection results obtained by a CRC unit (211), a control unit (208) in the provided terminal (200) uses response signal transmission rules to control the transmission of response signals or uplink control signals that indicate the generation of uplink data. If an uplink control signal and a response signal are generated simultaneously within the same transmission time unit, the control unit (208) changes the resources allocated to the response signal and/or the phase point of the response signal in accordance with the number and position of ACKs within the error-detection result pattern.
Abstract:
The purpose of the present invention is to avoid ACK/NACK collision in a system in which E-PDCCH control information is transmitted, increase the utilization efficiency of ACK/NACK resources, and suppress unnecessary PUSCH band reduction. A wireless communications terminal having a configuration comprising: a reception unit that receives control signals including ACK/NACK indexes, via an expanded physical downlink control channel; a control unit that determines, on the basis of the ACK/NACK indexes, whether to use a dynamically allocated dynamic ACK/NACK resource or a specified resource specified beforehand, to send downlink data ACK/NACK signals; and a transmission unit that sends the ACK/NACK signals using the dynamic ACK/NACK resource or the specified resource, as determined.
Abstract:
In a base station (100), when the number of layers employed is 1 and the employed antenna port and the antenna port used for transmitting the allocation control signal are the same, a transmission controller (102) sets a first data resource region inside a first resource region, in a resource block group (RBG), that can be used for the control channel or the data channel. When the number of layers employed is 1 and the employed antenna port and the antenna port used for transmitting the allocation control signal are different, a transmission controller (102) sets a second data resource region inside the first resource region in the RBG. The second data resource region is larger than the first data resource region.
Abstract:
A repetition unit generates repetition signals by repeating an uplink signal over a plurality of subframes. If the plurality of subframes do not include a transmission candidate subframe of a sounding reference signal (SRS) used to measure uplink reception quality, a control unit sets a first transmission format to all the plurality of subframes, and if the plurality of subframes include the transmission candidate subframe, the control unit sets a second transmission format to all the plurality of subframes. A transmission unit transmits the repetition signals using the set transmission format.
Abstract:
A transmission device capable of flexibly setting the transmission mode, even in cases when the candidates for the resource domain to be used to transmit a control signal to a terminal include both a first downlink resource domain that can be used as either a control channel or a data channel and a second downlink resource domain that can be used as a control channel, wherein a transmission mode setting unit (101) sets one transmission mode for each of the first and second downlink resource domains, said transmission mode being selected from among a plurality of transmission modes in which a plurality of control signal formats and the transmission methods that correspond to the control signal formats and are used to transmit data to a terminal (200) have been associated.