Abstract:
Se describen técnicas para admitir llamadas de emergencia (e-calls). En un aspecto, un indicador de llamada de emergencia (e-call) puede utilizarse para indicar una llamada de emergencia (e-call) que está entrando. En un diseño, una terminal puede generar un mensaje que incluye un indicador de e-calls y puede enviar el mensaje para originar una llamada de emergencia (e-call). El indicador de llamada de emergencia (e-call) puede indicar (i) si una llamada es o no una llamada de emergencia (e-call) o (ii) si una llamada de emergencia se inicia automáticamente por la terminal o manualmente por el usuario. En otro aspecto, una terminal puede evitar enviar señales para la gestión de movilidad y gestión de conexión a redes inalámbricas excepto para llamadas de emergencia (e-Calls) y llamadas designadas. La terminal puede evitar admitir la actualización de ubicación, efectuar registro, responder a peticiones de localización, etc. La terminal puede intercambiar señales con una red inalámbrica para una llamada de emergencia (e-call) iniciada por la terminal. Después de que se inició la llamada de emergencia, la terminal puede admitir la ubicación actual con la red inalámbrica y establecer la comunicación para la llamada de emergencia.
Abstract:
Techniques for supporting eCalls are described. In an aspect, an eCall indicator may be used to indicate an eCall being established. In one design, a terminal may generate a message including an eCall indicator and may send the message to originate an eCall. The eCall indicator may indicate (i) whether or not a call is an eCall or (ii) whether an eCall is initiated automatically by the terminal or manually by a user. In another aspect, a terminal may avoid sending signaling for mobility management and connection management to wireless networks except for eCalls and designated calls. The terminal may avoid performing location updating, performing registration, responding to paging requests, etc. The terminal may exchange signaling with a wireless network for an eCall initiated by the terminal. After the eCall is initiated, the terminal may perform location updating with the wireless network and call establishment for the eCall.
Abstract:
A method and apparatus for implicit floor control in push-to-talk over cellular system. A message is generated by a client in a communication system and is then streamed to a push-to-talk server. The server checks to see if the floor is idle, and if so, distributes the message to at least one other participant in the communication session. If the floor is not idle, the new message is stored and queued for distribution after all other messages ahead of the last received message have been distributed.
Abstract:
A method and apparatus for implicit floor control in push-to-talk over cellular system. A message is generated by a client in a communication system and is then streamed to a push-to-talk server. The server checks to see if the floor is idle, and if so, distributes the message to at least one other participant in the communication session. If the floor is not idle, the new message is stored and queued for distribution after all other messages ahead of the last received message have been distributed.
Abstract:
A method and apparatus for interworking between push-to-talk over cellular (PoC) systems and instant messaging (IM) systems is provided. An interworking entity that behaves like a PoC client to a PoC server and as an IM client to the IM server is provided. The interworking entity may be implemented as part of the PoC server or the IM server. The interworking entity listens to talk bursts from the PoC server and when it receives a talk burst the interworking entity sends the message to the IM client via the IM server. In an embodiment, the interworking entity listens to talk bursts or audio clips from the IM server and when it receives them, stores them in a temporary storage memory and converts them to a streaming format. The interworking entity then requests the floor from the PoC server, and, once the floor is granted, streams the stored audio clip or talk burst to the PoC server. The PoC server then distributes the clips to the PoC clients.
Abstract:
A method and apparatus for implicit floor control in push-to-talk over cellular system. A message is generated by a client in a communication system and is then streamed to a push-to-talk server. The server checks to see if the floor is idle, and if so, distributes the message to at least one other participant in the communication session. If the floor is not idle, the new message is stored and queued for distribution after all other messages ahead of the last received message have been distributed.
Abstract:
A method and apparatus for over-the-air provisioning of authentication credentials at an access device via a first access system, wherein the authentication credentials are for a second access system lacking an over-the-air provisioning procedure. For example, the second access system may be a 3GPP system using AKA authentication methods. The first access system may be CDMA, using an OTASP or IOTA procedure. Provisioning the authentication credentials may include provisioning any of a 3GPP AKA authentication root key (K), AKA authentication related parameters, an AKA authentication algorithm to be used in the 3GPP authentication, or authentication algorithm customization parameters.
Abstract:
Techniques for transporting messages for location services (LCS) are described. A Mobility Management Entity (MME) may have a location session with an Evolved Serving Mobile Location Center (E-SMLC) to provide location services for a User Equipment (UE). The UE may exchange LCS-related messages with the E-SMLC to obtain location services. In an aspect, LCS-related messages exchanged between the UE and the E-SMLC may be encapsulated in Non-Access Stratum (NAS) messages and transported via the MME and a base station. In another aspect, a routing identifier (ID) may be used to associate messages exchanged between the UE and the MME with the location session between the MME and the E-SMLC for the UE. Each NAS message exchanged between the MME and the UE may include the routing ID, which may enable the MME to associate each NAS message from the UE with the location session between the MME and the E-SMLC.
Abstract:
Apparatuses and methods for implementing explicit congestion notification (ECN) across disparate networks, configurations, and protocols are disclosed. In response to an indicated network congestion, a data rate adjustment request is provided for requesting a lower data rate from a first user equipment (UE) in a first network.