Abstract:
A user equipment (UE) is configured for carrier aggregation in a wireless communication system. The UE selects control information to be transmitted in an uplink control channel format in a component carrier of two or more component carriers, where the control information includes information types associated with different information reliability requirements. The UE generates an open-loop power control parameter and/or a closed-loop power control parameter based on the information types. The UE transmits the control information in the uplink control channel format at a power level determined by the open-loop power control parameter and/or the closed-loop power control parameter.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatuses for acknowledging transmissions in a system utilizing a half-duplex node. According to certain aspects, a half-duplex node may receive, in a plurality of subframes, a plurality of downlink transmissions and send an uplink transmission comprising a plurality of bits indicative of whether the downlink transmissions were successfully received.
Abstract:
Certain aspects of the present disclosure relate to a technique for managing contention-based uplink data transmissions. According to certain aspects, a base station may allocate a common contention-based resource to a plurality of user equipment (UEs). The plurality of UEs may utilize the contention-based resource to transmit uplink data without prior scheduling, which may result in transmission collisions. Certain aspects of the present disclosure provide a mechanism for determining which UE sent an uplink transmissions based on one or more transmission parameter signaled to the UEs.
Abstract:
Methods and apparatus for processing channel quality information (CQI) and scheduling resources subject to cooperative resource allocation based on the CQI are provided. To convey the CQI for protected/unprotected subframes in a single report, a new vector CQI format may be utilized. Two alternatives for CQI processing this vector format and the advantages of each are described. In the first alternative, a single entry from the CQI vector is selected for processing by a downlink scheduler and/or other media access control (MAC) blocks (e.g., a PHICH, DCI power control, and/or PDCCH scheduler). In the second alternative, the selection from the CQI vector is made on a per-subframe basis, and both the subframe and the selected CQI element are processed by the downlink scheduler and/or the other MAC blocks. In this manner, better scheduling decisions may be made using the CQI vector.
Abstract:
Methods and apparatus for supporting adaptive resource negotiation between evolved node Bs (eNBs) for enhanced inter-cell interference coordination (eICIC) are provided. This resource negotiation may occur via a network backhaul between the eNBs or, in some cases, using over-the-air messages (OAMs). For certain aspects, a first eNB may propose its adaptive resource partitioning information (ARPI) to a second eNB, where the second eNB may accept or reject the proposed resource partitioning. If the second eNB accepts the proposed partitioning, the second eNB may schedule resources, such as subframes, based on the accepted partitioning.
Abstract:
Discontinuous reception (DRX) operation may be utilized to maintain connection with user equipment (UE) by increasing the effective control channel transmission periodicity. UEs may be configured with a compatible control channel transmission periodicity such that multiple UEs may share a resource in a time-division-multiplexed manner using DRX offsets and periodicity, effectively extending control channel transmission periodicity through resource overloading.
Abstract:
Methods, apparatuses, and computer program products are disclosed for facilitating a radio link failure determination. A wireless terminal is configured to monitor a control channel quality of a control signal over at least one control carrier. A radio link failure determination is then made based on the control channel quality of the at least one control carrier. In other embodiments, rather than basing the radio link failure determination solely on the set of control carriers, the wireless terminal is configured to monitor a control channel quality over at least one additional carrier, not included in the set of control carriers, in response to a link loss detected over each of the set of control carriers. For such embodiments, the radio link failure determination is then made based on the control channel quality of the additional carrier(s).
Abstract:
Techniques for sending control information in a wireless communication system are described. A user equipment (UE) may be configured to periodically send control information (e.g., CQI information) and may receive an assignment of control resources for sending the control information. The UE may also receive an assignment (e.g., a dynamic assignment or a semi-persistent assignment) of data resources for sending data. The UE may send the control information (i) on the control resources if the control and data resources do not coincide in time or (ii) on a designated portion of the data resources if the control and data resources coincide in time. The UE may generate at least one SC-FDMA symbol with the control information sent on the control resources or the designated portion of the data resources. The UE can maintain a single-carrier waveform for each SC-FDMA symbol.
Abstract:
Inter-cell interference coordination (ICIC) by a home evolved NodeB (HeNB) is described. A portion of bandwidth (resources) is reserved for a user equipment (UE), 404. Notification of the reserved portion of bandwidth is sent to at least one potentially interfering evolved NodeB (eNB), 406. A data exchange is performed with the UE using the reserved portion of bandwidth, 408. Notification is sent to the potentially interfering eNBs releasing the reserved portion of bandwidth, 412. In a different embodiment, a transmit power is reduced with a first slew rate (i.e. stepwise) and increased with a second slew rate. In another embodiment, a prepared measurement report which includes a measured received signal strength (for a HeNB) is sent to a first eNB by a UE.
Abstract:
Systems and methodologies are described that facilitate signaling and/or utilizing uplink delay budget related feedback in a wireless communication environment. A lowest delay budget associated with a most urgent Radio Link Control (RLC) service data unit (SDU) retained in a buffer of an access terminal can be determined. Further, a portion of a Medium Access Control (MAC) header ( e.g. , two reserved bits, ) can be configured to carry a code related to a delay threshold corresponding to the lowest delay budget. Moreover, the MAC header can be transferred to a base station. The base station can detect the code carried by the portion of the MAC header, and a delay threshold can be determined as a function of the detected code ( e.g. , utilizing a radio bearer specific mapping). According to an example, the access terminal can be scheduled for uplink transmission as a function of the delay threshold.