Abstract:
Disclosed are methods, devices, systems, apparatus, servers, computer-/processor-readable media, and other implementations, including a method of estimating a range between a first wireless device and a second wireless device that includes obtaining, at the first wireless device, first information related to a first broadcast message transmitted by the first wireless device, and obtaining, at the first wireless device, second information related to a second broadcast message transmitted by the second wireless device, with the second broadcast message including at least some of the first information. The method also includes determining the range between the first wireless device and the second wireless device based, at least in part, on the first information and the second information.
Abstract:
A range between a first wireless device and a second wireless device is estimated using a first mechanism based on messages transmitted over a first communication channel. The first communication channel is associated with a first radio access technology capability of the wireless devices. One or more metrics indicative of an accuracy of the range estimates provided by the first mechanism are obtained. A second mechanism to estimate a range between the first wireless device and the second wireless device may be implemented in favor of the first mechanism when the metric fails to satisfy a criterion. The second mechanism is based on unicast messages transmitted over a second communication channel. The second communication channel is associated with a second radio access technology capability of the wireless devices and may be the same as, or different from, the first communication channel.
Abstract:
Provided are apparatus and methods for ranging between a plurality of wireless devices. An exemplary method includes, at a first wireless device, transmitting a primary portion symbol comprising a first packet and transmitting a secondary portion symbol. The secondary portion symbol is transmitted simultaneously at a lower transmit power than the primary portion symbol, and the secondary portion symbol comprises a second packet identical to the first packet. The primary portion symbol can be transmitted in a first channel having a substantially 20 MHZ bandwidth and the secondary portion can be transmitted in a second channel having a substantially 20 MHZ bandwidth. The first and second channels are substantially adjacent in frequency. After transmitting the primary portion symbol, for example, a high-throughput long-training-field symbol or a very-high-throughput long-training-field symbol can be repetitively transmitted. This exemplary method enhances time-of-arrival estimation accuracy, minimizes decoding bottlenecking, and maximizes wireless device range.
Abstract:
Methods, systems, and devices are described for securing content for delivery via a communications network. The methods, systems and devices may involve coding a plurality of packets using a determined code to generate a coded set of packets. A plurality of packets of the coded set of packets may be hashed to generate a plurality of hashes. The plurality of hashes may be transmitted via the communications network to deliver the secured content.
Abstract:
Methods, systems, and devices are described for adapting access timing parameters when using DSRC spectrum. A multi-mode device may adapt at least one access timing parameter while operating within the DSRC spectrum. The at least one access timing parameter may be adapted to provide priority to transmissions of DSRC devices using the DSRC spectrum. The multi-mode device may increase a duration of a short inter-frame spacing (SIFS) to be at least equal to a duration of a SIFS used by a DSRC device.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE. The UE receives pilot signals from a serving base station and at least one interfering base station. The UE determines phase rotations used by the serving base station and the at least one interfering base station for transmitting resource blocks. The UE determines channel feedback based on the received pilots signals and the determined phase rotations for each of the serving base station and the at least one interfering base station. The UE sends the channel feedback to the serving base station. The UE receives data based on the determined phase rotations.
Abstract:
A wireless communications device operates in a system where communications resources may be used by multiple devices concurrently. A device, with an acquired set of recurring time intervals, selects, e.g., pseudo-randomly, an interval or intervals to be used as a combined data transmission and channel measurement time interval. The other time intervals in its set are to be used as data transmission time intervals. The combined use type interval facilitates the measurement of interference on the device's channel while still allowing the device to transmit some data during the interval. A combined use interval includes a first portion for data transmission and a second portion for channel measurement. In some embodiments, the first portion is fixed size and the second portion occurs at the very end of the interval. In some embodiments, the duration of the first portion is varied over time such that the channel measurement start time varies.