Abstract:
The present disclosure provides methods and apparatuses for improved UE communication mode determination by a network entity, such as a radio network controller, where multi-cell and multi-carrier communication is available to the UE in a wireless network. For example, in an aspect, methods and apparatuses are provided for determining whether a user equipment (UE) is in a soft handover region and a softer handover region, and where the UE is in such a region, predicting a future multi-cell performance of the UE assuming the UE will be served by a plurality of cells on a single carrier, predicting a future multi-carrier performance of the UE assuming the UE will be served by a plurality of carriers of a single cell, comparing the future multi-cell performance to the future multi-carrier performance, and transmitting a mode command to the UE based at least on the comparing.
Abstract:
A random access procedure for UEs in Cell_FACH or another suitable non-DCH state, which enables concurrent deployment of 2ms and 10ms TTIs for uplink transmissions on the E-DCH. In some examples, the procedure may further enable utilization of a Rel-99 PRACH transmission by UEs in the Cell_FACH or other suitable non-DCH state.
Abstract:
A method for signaling multiple-user multiple-input and multiple-output in a high speed packet access system is described. A multiple-user multiple-input and multiple-output parameter is determined. A message that includes the multiple-user multiple-input and multiple-output parameter is determined. The message is sent to a wireless device. The method may be performed by a user equipment, a Node B or a radio network controller.
Abstract:
A system and method enable handover from a DC-HSUPA-capable node in a cellular wireless network to a non-DC-HSUPA-capable node. According to various aspects of the present disclosure, a handover may implement a legacy serving cell change procedure or an enhanced serving cell change procedure. In either case, signaling from the network to user equipment includes information to enable the user equipment to change or remove an Active Set when undergoing a handover from a cell with two uplink carriers and accordingly two Active Sets, to a cell with one uplink carrier and accordingly one Active Set.
Abstract:
A system and method enable wireless user equipment (UE) to undergo a serving radio network subsystem (SRNS) relocation to a radio network controller (RNC) that does not support a fast dormancy feature while maintaining synchronization with the packet-switched domain of the core network. The UE is made aware of whether the target RNC supports the fast dormancy feature by way of an indication provided to the UE in a reconfiguration message provided by the source RNC, that is, the RNC to which the UE was connected prior to the SRNS relocation. In this way, the UE can behave accordingly whether or not the target RNC supports the fast dormancy feature.
Abstract:
Methods, systems and apparatuses for controlling radio links in a multiple carrier wireless communication system are disclosed. A method can include aggregating control functions from at least two carriers onto one carrier to form an anchor carrier and one or more associated secondary carriers; establishing communication links for the anchor carrier and each secondary carrier; and controlling communication based on the anchor carrier.
Abstract:
A method for wireless communications is provided. The method includes generating two or more uplink carrier signals across a wireless network and generating at least one active signal set for the wireless network. The method also includes generating one or more secondary active signal sets in accordance with the two or more uplink carrier signals to facilitate communications across the wireless network.
Abstract:
Systems and methodologies are described that effectuate and/or facilitate MAC-hs/ehs resets in an enhanced serving cell. In accordance with various aspects set forth herein, systems and/or methods are provided that identify transmission power control bits included in active set update messages received from source or target base stations, ascertain whether or not transmission power control values included in the active set update messages differ from transmission power control values that the system currently operates under, and performs serving cell changes and where necessary media access control status resets based on an examination of a transmission power control combination index.
Abstract:
Methods and apparatus for providing modified timestamps in a communication system. In an aspect, a method includes receiving one or more packets associated with a selected destination, computing an average relative delay associated with each packet, determining a modified timestamp associated with each packet based on the average relative delay associated with each packet, and outputting the one or more packets and their associated modified timestamps. In an aspect, an apparatus is provided for generating modified timestamps. The apparatus includes a packet receiver configured to receive one or more packets associated with a selected destination and processing logic configured to compute an average relative delay associated with each packet, determine a modified timestamp associated with each packet based on the average relative delay associated with each packet, and output the one or more packets and their associated modified timestamps.
Abstract:
Methods, apparatus, systems and computer program products are defined that provide for in-order deliver of data packets during hand-off. The aspects provide for in-order delivery at Forward Link Serving eBS/Data Attachment Point (FLSE/DAP) switch and Reverse Link Serving eBS/Data Attachment Point (RLSE/DAP) switch. As such, present aspects provide for significant improvement in the throughput of applications, such as applications relying on Transmission Control Protocol (TCP), during handoff, in such networks as Ultra Mobile Broadband (UMB) and the like.