Abstract:
Methods and apparatuses for optimizing performance using data from an Internet of Things (IoT) device with analytics engines. The method receives, from a requesting Internet of Things (IoT) device, a request for trend data of physical resource consumption based at least in part on a portion of received data from at least one of a plurality of IoT devices. The method retrieves, from memory of an analytics engine, at least the portion of the received data. The method calculates, in a calculator of the analytics engine, the trend data based on at least the portion of the received data. The method transmits, to the requesting IoT device, the calculated trend data, wherein the requesting IoT device adjusts parameters in an IoT device using the calculated trend data.
Abstract:
A framework is provided that enables a group communication session participant to specify the manner in which his or her computing device handles/renders media received from other group communication session participants based on the identity of the sender of the media. The various embodiments enable the group communication participant to manage the presentation of media on the various interfaces of his or her computing device based on both the type of the received media and the sender ID (i.e., talker ID) associated with the received media. In an embodiment, the user may be enabled to dynamically switch the media handling settings during a group communication session.
Abstract:
Systems and methods are disclosed for setting a control zone configuration for members of a communication group. A dispatcher device establishes a geofence associated with a geographic area including one or more members of the communication group, determines the control zone configuration for members of the communication group within the geofence, and sends the control zone configuration to the one or more members of the communication group.
Abstract:
In an embodiment, a first client device establishes a P2P connection with a second client device. While the P2P connection is still established, the first client device receives a request to send data to the second client device via the P2P connection, and then sends the data to a server along with an indication of a temporary identifier of the second client device without notifying an operator of the first client device that the data is being sent to the server. In another embodiment, the server receives the data, maps the temporary identifier to a unique network address of the second client device and generates a record of the data transmission between the respective client devices. In another embodiment, the server maintains an association for the temporary identifier after the first and second client devices are disconnected from their P2P connection to permit supplemental communication.
Abstract:
Systems and methods are disclosed for maintaining continuity of a peer-to-peer group session. The method may include exchanging a first P2P group session communication with a member of the P2P group via a direct data traffic connection, requesting session data from an application server, conveying the session data to a proxy UE, wherein the proxy UE is a member of the P2P group, and exchanging a second P2P group session communication with the application server in accordance with the session data.
Abstract:
A system and method for associating a mobile computing device with a particular seat in a seating environment. The system collects first sensor data from device sensors of a first mobile computing device based on activity detected within the seating environment. The system then determines, for each of a plurality of seats in the seating environment, a degree of correlation with the mobile computing device based at least in part on the first sensor data, and associates the mobile computing device with the seat, among the plurality of seats, having the highest degree of correlation with the first mobile computing device.
Abstract:
Systems and methods are disclosed for setting a control zone configuration for members of a communication group. A dispatcher device establishes a geofence associated with a geographic area including one or more members of the communication group, determines the control zone configuration for members of the communication group within the geofence, and sends the control zone configuration to the one or more members of the communication group.
Abstract:
In the network-based group management and floor control mechanism disclosed herein, a server may receive a request to occupy a shared IoT resource from a member device in an IoT device group and transmit a message granting the member IoT device permission to occupy the shared IoT resource based on one or more policies. For example, the granted permission may comprise a floor that blocks other IoT devices from accessing the shared IoT resource while the member IoT device holds the floor. Furthermore, the server may revoke the permission if the member IoT device fails to transmit a keep-alive message before a timeout period expires, a high-priority IoT device pre-empts the floor, and/or based on the policies. Alternatively, the server may make the shared IoT resource available if the member IoT device sends a message that voluntarily releases the floor.