Abstract:
A wireless transmitter can include a plurality of bandwidth modules, each bandwidth module processing data based on a predetermined frequency band. In one embodiment, such a wireless transmitter can include encoding components for receiving transmit data and generating encoded data. A multiple-input multiple-output (MIMO) stream parser can receive the encoded data and generate a plurality of MIMO streams. A first module parser coupled to a first MIMO stream can generate a first plurality of partial MIMO streams. A first bandwidth module can include a first interleaver that interleaves bits of the first partial MIMO stream and generates first interleaved data. A second bandwidth module can include a second interleaver that interleaves bits of the second partial MIMO stream and generates second interleaved data. A first inverse fast Fourier transform (IFFT) unit can combine and process the first and second interleaved data and generate a first transmission MIMO stream.
Abstract:
A wireless transmitter can include a plurality of bandwidth modules, each bandwidth module processing data based on a predetermined frequency band. In one embodiment, such a wireless transmitter can include encoding components for receiving transmit data and generating encoded data. A multiple-input multiple-output (MIMO) stream parser can receive the encoded data and generate a plurality of MIMO streams. A first module parser coupled to a first MIMO stream can generate a first plurality of partial MIMO streams. A first bandwidth module can include a first interleaver that interleaves bits of the first partial MIMO stream and generates first interleaved data. A second bandwidth module can include a second interleaver that interleaves bits of the second partial MIMO stream and generates second interleaved data. A first inverse fast Fourier transform (IFFT) unit can combine and process the first and second interleaved data and generate a first transmission MIMO stream.
Abstract:
A method for determining uplink channel information includes sending a trigger frame from an access point of a wireless network to a plurality of stations in the wireless network. The method also includes receiving an uplink transmission from at least one station of the plurality of stations in response to sending the trigger frame. The method further includes determining uplink channel data based on the uplink transmission. The method also includes sending the uplink channel data to the at least one station. The uplink channel data is usable by the at least one station to send data to the access point.
Abstract:
A method and apparatus for concurrent wireless communications on multiple channels of the same frequency band. A wireless device determines when a first transceiver chain of the wireless device is to receive a first data signal. The wireless device then transmits a second data signal via a second transceiver chain of the wireless device based at least in part on the determination. The wireless device further suspends the transmission of the second data signal in response to the determination that the first transceiver chain is to receive the first data signal.
Abstract:
Systems and methods are provided for preferentially locating a candidate channel likely to have an active network during a WLAN scanning process of an increased bandwidth. The candidate channel may be detected using spectral analysis of a received signal that may involve any combination FFT captures and correlation operations associated with detecting packets. Upon identification of a candidate channel, a wireless communications device may switch to that channel to receive and process one or more packets to determine the existence of a BSS available for association.