Abstract:
Provided are a power battery pack and an electric vehicle. The power battery pack is fixed on the electric vehicle, and is configured to provide power for the electric vehicle. The power battery pack includes: a pack body; a plurality of cells, disposed in the pack body and disposed in the pack body; the cell having a length Lo, a width Ho, and a thickness Do, where at least one cell meets: L 0 >H 0 ≥D 0 , a length direction of the cell is arranged along a width direction of a vehicle body of the electric vehicle, and in the width direction of the electric vehicle, a sum of the length Lo of the cell and a size W of the vehicle body of the electric vehicle in the width direction meet: 46%≤L/W≤76%; or at least one cell meets: L 0 >H 0 ≥D 0 , a length direction of the cell is arranged along a length direction of a vehicle body of the electric vehicle, and in the length direction of the electric vehicle, the sum of the length Lo of the cell and a size X of the vehicle body of the electric vehicle in the length direction meet: 40%≤L/W≤76%.
Abstract:
A battery pack, a vehicle, and an energy storage device are provided. The battery pack includes a cell array and a support member, where the cell array includes a plurality of cells, each of the plurality of cells has a first size, and the first size is a maximum value of spacings between pairs of imaginary parallel planes that clamp the cell; at least one cell satisfies 600 mm≤first size≤2500 mm, and is supported by the support member; and a normal direction of two parallel planes corresponding to the first size is a direction Q, a battery placement area is defined in the battery pack, the cell array is located in the battery placement area, and each of the plurality of cells extends from one side of the battery placement area to another side of the battery placement area along the direction Q.
Abstract:
Provided are a power battery pack and an electric vehicle. The power battery pack includes: a pack body, where an accommodating space is defined in the pack body, the pack body is provided therein with at least one widthwise cross beam or lengthwise cross beam, the widthwise cross beam extends along a width direction of the power battery pack, the lengthwise cross beam extends along a length direction of the power battery pack, and the accommodating space is divided into a plurality of accommodating chambers by the at least one widthwise cross beam or lengthwise cross beam; and a plurality of cells, disposed in the pack body and directly arranged in the accommodating chambers, where at least one cell is arranged in each accommodating chamber to form a cell array. The power battery pack according to the embodiments of this application has advantages of high space utilization, large energy density, long battery life, high reliability, low costs, high quality, and the like.
Abstract:
A cell, a power battery pack, and an electric vehicle are provided. The cell includes a cell body, and the cell body has a length L, a width H and a thickness D. The length L of the cell body is greater than the width H, the width H of the cell body is greater than the thickness D, the length L of the cell body is greater than 600 mm, and the length L and the width H of the cell body satisfy L/H=4-21.
Abstract:
A battery pack, a vehicle, and an energy storage device are provided. The battery pack includes: a battery pack housing and a plurality of rectangular cells, the battery pack housing having a first direction and a second direction perpendicular to the first direction; where the battery pack has a dimension greater than or equal to 600 mm along the first direction, and at least one rectangular cell accommodating unit is formed in the battery pack housing; the plurality of rectangular cells are arranged in the rectangular cell accommodating unit along the second direction; the rectangular cell extends along the first direction, and one rectangular cell is disposed in each rectangular cell accommodating unit along the first direction; the rectangular cell has a thickness of D, a length of L, and a height of H; the battery pack has a dimension greater than or equal to L along the first direction; and a length direction of at least one rectangular cell extends from one side of the rectangular cell accommodating unit to the other side of the rectangular cell accommodating unit along the first direction, and meets: L > H, L > D, 600 mm ≤ L ≤ 2500 mm, 23 ≤ L/D ≤ 208.
Abstract:
The disclosure provides a polymer composite membrane, a method for preparing same, and a lithium-ion battery including same. The polymer composite membrane includes a polymer base membrane, where the polymer base membrane includes a first surface and a second surface disposed opposite to each other, and the polymer composite membrane further includes a first ceramic layer, a first heat-resistant fiber layer, and a first bonding layer disposed sequentially from inside out on the first surface of the polymer base membrane, where materials of the first heat-resistant fiber layer contain a first polymeric material and a second polymeric material.
Abstract:
A solar cell array (30), a solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell array (30) includes a plurality of cells (31) and a plurality of conductive wires (32). Adjacent cells (31) are connected by the plurality of conductive wires (32). Each cell (31) has a front surface on which light is incident when the cell (31) is in operation and a back surface opposite to the front surface. The solar cell array (30) further comprises secondary grid lines (312) disposed on the front surface of the respective cell (31). The secondary grid lines (312) comprise middle secondary grid lines (3122) disposed in the middle of the respective cell (31) and intersected with the conductive wires (32). The secondary grid lines (312) also comprise edge secondary grid lines (3121) disposed on the edges of the respective cell (31) and non-intersected with the conductive wires (32). The solar cell array (30) also comprises short grid lines (33) disposed on a front surface of the cell (31). The short grid lines (33) connect the edge secondary grid lines (3121) with the conductive wires (32) or with at least one middle secondary grid line (3122).
Abstract:
A solar cell unit, a solar cell array (30), a solar cell module (100) and a manufacturing method thereof are disclosed. The solar cell unit includes a cell (31) which consists of a cell substrate (311) and a secondary grid line (312) disposed on a front surface of the cell substrate (311); a conductive wire (32) intersected and welded with the secondary grid line (312), and the secondary grid line (312) having a width in a welding position with the conductive wire (32) greater than a width thereof in a non-welding position.