Network devices in duty cycle limited networks

    公开(公告)号:US11818048B2

    公开(公告)日:2023-11-14

    申请号:US17239244

    申请日:2021-04-23

    CPC classification number: H04L47/127 H04L43/0882

    Abstract: Aspects of the disclosure provide for a computer program product comprising computer executable instructions. The instructions are executable by a controller of a network device to cause the controller to analyze data transmitted by the network device via a network for a programmed amount of time, determine a data transmission pattern based on the analysis, determine, based on the transmission pattern, a volume of expected data transmission during a period of time, and determine whether to transmit additional data based on a relationship between the volume of expected data transmission during the period of time and a bandwidth allocation of the network device during the period of time.

    Long preamble and duty cycle based coexistence mechanism for power line communication (PLC) networks

    公开(公告)号:US11722174B2

    公开(公告)日:2023-08-08

    申请号:US17119831

    申请日:2020-12-11

    Abstract: Embodiments of methods and systems for supporting coexistence of multiple technologies in a Power Line Communication (PLC) network are disclosed. A long coexistence preamble sequence may be transmitted by a device that has been forced to back off the PLC channel multiple times. The long coexistence sequence provides a way for the device to request channel access from devices on the channel using other technology. The device may transmit a data packet after transmitting the long coexistence preamble sequence. A network duty cycle time may also be defined as a maximum allowed duration for nodes of the same network to access the channel. When the network duty cycle time occurs, all nodes will back off the channel for a duty cycle extended inter frame space before transmitting again. The long coexistence preamble sequence and the network duty cycle time may be used together.

    Sleepy device operation in asynchronous channel hopping networks

    公开(公告)号:US11637585B2

    公开(公告)日:2023-04-25

    申请号:US17356792

    申请日:2021-06-24

    Abstract: A radio communications device includes a RTC configured to run even during sleep for receiving from a coordinator node (CN) in an asynchronous channel hopping WPAN an asynchronous hopping sequence (AHS) frame that includes the CN's hopping sequence. A processor implements a stored sleepy device operation in asynchronous channel hopping networks algorithm. The algorithm is for determining a time stamp for the AHS frame and the CN's initial timing position within the hopping sequence, storing the time stamp, going to sleep and upon waking up changing a frequency band of its receive (Rx) channel to an updated fixed channel. A data request command frame is transmitted by the device on the CN's listening channel that is calculated from the CN's hopping sequence, time stamp, CN's initial timing position and current time, and the device receives an ACK frame transmitted by the CN at the updated fixed channel of Rx operation.

    Authentication of Networked Devices Having Low Computational Capacity

    公开(公告)号:US20230032116A1

    公开(公告)日:2023-02-02

    申请号:US17963411

    申请日:2022-10-11

    Abstract: Authentication of a networked device with limited computational resources for secure communications over a network. Authentication of the device begins with the supplicant node transmitting a signed digital certificate with its authentication credentials to a proxy node. Upon verifying the certificate, the proxy node then authenticates the supplicant's credentials with an authentication server accessible over the network, acting as a proxy for the supplicant node. Typically, this verification includes decryption according to a public/private key scheme. Upon successful authentication, the authentication server creates a session key for the supplicant node and communicates it to the proxy node. The proxy node encrypts the session key with a symmetric key, and transmits the encrypted session key to the supplicant node which, after decryption, uses the session key for secure communications. In some embodiments, the authentication server encrypts the session key with the symmetric key.

    Authentication of networked devices having low computational capacity

    公开(公告)号:US11470077B2

    公开(公告)日:2022-10-11

    申请号:US17159016

    申请日:2021-01-26

    Abstract: Authentication of a networked device with limited computational resources for secure communications over a network. Authentication of the device begins with the supplicant node transmitting a signed digital certificate with its authentication credentials to a proxy node. Upon verifying the certificate, the proxy node then authenticates the supplicant's credentials with an authentication server accessible over the network, acting as a proxy for the supplicant node. Typically, this verification includes decryption according to a public/private key scheme. Upon successful authentication, the authentication server creates a session key for the supplicant node and communicates it to the proxy node. The proxy node encrypts the session key with a symmetric key, and transmits the encrypted session key to the supplicant node which, after decryption, uses the session key for secure communications. In some embodiments, the authentication server encrypts the session key with the symmetric key.

    Network address assignment and reclamation for hierarchical based RPL networks

    公开(公告)号:US11368393B2

    公开(公告)日:2022-06-21

    申请号:US16696150

    申请日:2019-11-26

    Abstract: Disclosed embodiments relate to a Hierarchical Do-Dag based RPL (H-DOC) network configuration where the network address of each node corresponds to its location within the hierarchical network. Network addresses are initialized hierarchically. Candidate patent nodes signal availability. Candidate child nodes respond to a selected candidate parent node with a temporary address. The selected candidate parent node acknowledges selection and communicates a hierarchical address for the child node in a transmission to the temporary address. The child node changes its address to the hierarchical address from the parent node. When a node switches parent nodes, it signals the old parent node to deallocate it as a child node, and then signals a selected candidate parent node with a temporary address.

    Beacon slot allocation in prime
    90.
    发明授权

    公开(公告)号:US11139857B2

    公开(公告)日:2021-10-05

    申请号:US16776681

    申请日:2020-01-30

    Abstract: Systems and methods for efficiently allocating beacon slot among multiple nodes on multiple levels within a power line communication network are described. In various implementations, these systems and methods may be applicable to Power Line Communications (PLC). For example, a method may include performing, by a communications device, assigning beacon transmission times to nodes within the communication device's network. The assigned beacon transmission times comprise a beacon slot and frame pattern. The beacon slot and frame pattern ensure that each node does not transmit a beacon in a beacon slot that is adjacent to a beacon slot assigned to a parent or child node. A beacon transmission slot is reserved for a base node in every frame. The frames may be organized into thirty-two-frame superframes, wherein each frame comprises a base node beacon slot and four switch node beacon slots.

Patent Agency Ranking