Abstract:
An improvement to a prosthetic device which provides a spring member between first and second structural members that are rotatably connected to one another, the spring member providing predictable resistance as it is compressed by the rotation of the first and second structural members with respect to each other. The known resistance of the spring is used as an input to a model controlling a motor control circuit to provide counter-torque as rotational torque is applied to compress the spring.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities; (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
Abstract:
A prosthetic knee provides security and stability, particularly to low activity users, household and limited community ambulators, single and/or slow speed ambulators, and those with little voluntary control, while also balancing walking (dynamic) performance for low activity users. The prosthetic knee includes a housing, parallel anterior links, a posterior link, and a chassis. The geometry of the links and their relationship to one another allow for low voluntary control, shortening of mid-swing, which reduces stumbling risk, and geometric stability in stance. The anterior links are particularly oriented, sized and located to provide for stability. The anterior links both extend above the posterior link and substantially below the posterior link. The prosthetic knee includes a friction adjustment mechanism, a stability adjustment mechanism, and an adjustable extension assist mechanism.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.
Abstract:
Knee orthoses or prostheses can be used to automatically when it is appropriate to initiate a stand-up sequence based on the position of the person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
Abstract:
An articulating connection or joint for a limb support device having a first support member and a second support member pivotably couples together the first support member and the second support member. The articulating connection can include one or more first articulating connection member, or load-bearing pin, and one or more second articulating connection member, or bushing, disposed about the first and second support members. The load-bearing pin is coupled to one of the support members and the bushing is coupled to another of the support members. The bushing is configured to rotatingly receive the load-bearing pin and interacts with an actuation member configured to apply a force on the load-bearing pin to eccentrically align the load-bearing pin relative to the bushing so that the load-bearing pin continuously follows and contacts a bearing surface of the bushing during use of the limb support device, thereby inhibiting noise generation from the interaction of the bushing and load-bearing pin.
Abstract:
Knee orthoses or prostheses can be used to automatically when it is appropriate to initiate a stand-up sequence based on the position of the person's knee with respect to the person's ankle while the person is in a seated position. When the knee is moved to position that is forward of the ankle, at least one actuator of the orthosis or prosthesis is actuated to help raise the person from the seated position to a standing position.
Abstract:
Hybrid terrain-adaptive lower-extremity apparatus and methods that perform in a variety of different situations by detecting the terrain that is being traversed, and adapting to the detected terrain. In some embodiments, the ability to control the apparatus for each of these situations builds upon five basic capabilities: (1) determining the activity being performed; (2) dynamically controlling the characteristics of the apparatus based on the activity that is being performed; (3) dynamically driving the apparatus based on the activity that is being performed; (4) determining terrain texture irregularities (e.g., how sticky is the terrain, how slippery is the terrain, is the terrain coarse or smooth, does the terrain have any obstructions, such as rocks) and (5) a mechanical design of the apparatus that can respond to the dynamic control and dynamic drive.