Abstract:
A method is described for removing ferrometal corrosion products from cooling water systems, which method recycles ferrous/ferric complexing agents and leads to low volume highly concentrated iron wastes for disposal. The method combines, preferably, the use of citric acid or citric acid-tannin complexing agents with erythorbic acid reducing agents to clean corroded surfaces followed by recovery of both complexing and reducing agents for recycle by contacting spent cleaning solution with strong acid cation exchange resins or chelating resins. The resins remove and retain iron species, releasing chelating and reducing agents to resin bed effluents. These are recycled. A concentrated iron waste stream is recovered by regenerating the resin beds with strong acids, preferably HCL, H.sub.2 SO.sub.4, and the like.
Abstract:
In an ion exchange treatment method for producing or regenerating an aqueous EDM fluid to be used for electric discharge machining, raw water is supplied under pressure to a column (4) charged with ion-exchange resins, and passed through a resin phase in the column (4), at a conspicuously large space velocity, for example, at least 20 h.sup.-1. Thereby, "harmful ions" to electric discharge machining are preferentially and selectively removed without excessively reducing electric conductivity of treated water at the outlet of the resin phase. The raw water is circulated through the resin phase, with the ion exchange treatment including such a large space velocity, until overall electric conductivity of treated water in a storage tank (17) is reduced to a desire value. The raw water is prevented from excessive ion exchange treatment to increase the volume of treated water per unit volume of resins, resulting in the longer useful life of resins.
Abstract:
A process for removing calcium from an amine-water solution is provided by using a low calcium cationic exchange resin which preferably has large pores to avoid hydrocarbon coating of the resin. Preferably, the resin is pretreated to reduce calcium concentration of the resin to less than two parts per million prior to use for calcium removal.
Abstract:
This invention relates to a method for removing halides from liquid carboxylic acid contaminated with a halide impurity by contacting the liquid halide-contaminated acid with a silver(I)-exchanged macroreticular resin. The halide reacts with the resin-bound silver and is removed from the carboxylic acid stream. The present invention also relates to an improved method for producing silver-exchanged macroreticular resins suitable for use in the present invention.
Abstract:
This invention relates to a method for improving the performance of liquidembrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Abstract:
This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.
Abstract:
Wastewaters containing hydroxylamine or its salts are worked up by a process in which the said wastewaters are passed over a strongly acidic ion exchanger, after which a 5-15% strength by weight aqueous sulfuric acid is passed over the said ion exchanger and a solution of hydroxylammonium sulfate in aqueous sulfuric acid is obtained.
Abstract:
Antimicrobial cation exchange compositions comprising a cation exchange resin having absorbed thereon an antimicrobial chosen from the class consisting of halocyanoacetamide and 2-acylamino-2-halo alkyl acetate antimicrobials. Said compositions are useful as sustained release antimicrobial compositions. In addition, said compositions can be used to simultaneously remove cations and microbes from an aqueous solution.
Abstract:
A process is described for removing low density and very low density lipoproteins from blood plasma or serum and recovering the plasma or serum in a physiologically acceptable form. The method involves in a preferred embodiment passing plasma or serum through a cationic ion exchanger equilibrated with a physiologically acceptable saline solution. The ion exchanger is a water insoluble hydrophilic, water swellable cross-linked regenerated or microgranular cellulose matrix substituted with hydroxy C.sub.2 -C.sub.4 alkyl group. The ion exchanger capacity is provided by sulphate groups substituted with from 2 to 6 meq/g. The take up of low density lipoproteins is enhanced by recycling the plasma through the column.
Abstract:
Rare earth metals are adsorbed on an ion exchange fiber comprising an ion exchanger having a strong cation exchange group and a weak cation exchange group, and the adsorbed metals are fractionally eluted with an aqueous solution of a chelating agent, whereby the respective rare earth metals can be separated at high efficiency in a short time. According to this method, elution can be accomplished at an elution rate of 5.0 or above in terms of space velocity.