Abstract:
In a method for a finishing work of a spray-coated surface, an inner surface of a cylindrical hollow member is roughened by forming a helical groove thereon. A thermal spray coating is formed on the inner surface that is roughened, and a finishing work is carried out by cutting the thermal spray coating along a helix of the groove by use of a cutting tool. According to the method for a finishing work, a finishing work of a thermal spray coating with non-uniform hardness can be carried out efficiently.
Abstract:
A producing method for a cylinder block includes: a spraying step of spraying a metallic material onto a bore inner surface of at least one cylinder bore formed in the cylinder block to form a spray deposit thereon; a pressurizing step of applying a predetermined pressure onto a surface of the spray deposit formed on the bore inner surface in the spraying step; and a honing step of applying a honing processing to the surface of the spray deposit after the pressurizing step.
Abstract:
The present invention relates to a method for producing a superamphiphobic coating on a substrate, said method comprising the steps of a) providing a substrate, b) generating a plasma in a treatment space, under atmospheric pressure, using a dielectric barrier discharge, by supplying a plasma gas (6) between at least a first and a second electrode (2 and 3) connected to alternating current (AC) power means (7), said electrodes (2 and 3) defining said treatment space (5), c) introducing into said plasma a coating forming material selected from the group consisting in fluoro-acrylate monomers, fluoro-alkyl acrylatemonomers,fluoro-methacrylate monomers, fluoro-alkyl methacrylatemonomers, fluroro-silane, monomers or a combination thereof, d) exposing at least a part of the surface of said substrate to said plasma comprising said coating forming material in multiple successive passes within said treatment space by moving said substrate, said at least first and/or second electrode (2, 3), or both, without stopping, from one pass to another, the generation of the plasma and said introduction of said coating forming material into said plasma.
Abstract:
An apparatus and method for forming a fusible coating or structure comprising a combustor that is operative to combust a fuel and contain the resulting flame to produce combustion products; means for cooling the combustion products to produce a hot carrier gas stream; and means for introducing fusible material into the hot carrier gas stream.
Abstract:
Provided herein are nanoparticulate coated structures and methods of making structures. The structures comprise a support element, a nanoparticulate layer, and a binder disposed on the support element, wherein the binder comprises an alkali silicate or borate. In addition, methods of making the structures and uses of the described structures are described herein.
Abstract:
An improved thermal spray apparatus and method of promotes mixing of axially fed particles in a carrier stream with a heated effluent stream without introducing significant turbulence into either the effluent or carrier streams. An axial injection port includes a plurality of chevrons at the distal end of the port. The chevrons are located radially around the circumference of the distal end of the axial injection port to increase the shared area between the two flow streams at the outlet of the port.
Abstract:
An improved thermal spray apparatus and method of promotes mixing of axially fed particles in a carrier stream with a heated effluent stream without introducing significant turbulence into either the effluent or carrier streams. An axial injection port includes a plurality of chevrons at the distal end of the port. The chevrons are located radially around the circumference of the distal end of the axial injection port to increase the shared area between the two flow streams at the outlet of the port.
Abstract:
Methods for combining conductive filled low surface energy substrates, such as but not limited to polyolefins, and flame applied nitrogen based coupling agents are described. The methods include adding a conductive material to a surface and or matrix of the thermoplastic substrate so as to form a conductive thermoplastic substrate and a flame applied nitrogen-based coupling agent to form functional groups on the conductive thermoplastic substrate. The methods provide improved paint transfer efficiency, paint coverage, and adhesion durability characteristics. The methods are especially suitable for paintable automotive components, such as but not limited to exterior body panels, fascias, and the like.
Abstract:
Coatings, particularly thin films, of polymeric material are produced in accordance with the invention by applying a finely divided aerosol of polymer solution to a substrate and substantially simultaneously applying an energy source to the applied solution to apply the solution. In cases where the polymer is cross-linking, the energy source assists in cross-linking of the polymer. The preferred energy source is a flame that may optionally or desirably deposit material along with the polymer spray. One particular aspect of the invention is directed to production of polyimide films. In accordance with another aspect of the invention, the co-deposition process is used to provide thin polysiloxane coatings on glass and other substrates.
Abstract:
A method for repairing minor defects in a workpiece using flame spraying is provided. The method includes first providing a workpiece having a defect and an area proximate to the defect. The method also includes routing a portion of the workpiece, including the defect, such that the routing removes at least a portion of the workpiece proximate to the defect. The depth to which the workpiece is routed may be controlled with a micro-stop countersink apparatus. A router bit is generally plunged into the workpiece in a direction orthogonal to the surface of the workpiece such that the routed portion of the workpiece defines a sidewall extending generally orthogonal to the workpiece and a conical bottom surface. The portion of the workpiece that has been removed by routing is then flame sprayed such that new material is added to fill the portion of the workpiece that has been routed.