Abstract:
The present invention relates to a monolithic aerogel comprising organic material and crystalline metal oxide particles, wherein the crystalline metal oxide particles are in a range from 3 to 20 volume percent, based on the total volume of the monolithic aerogel, wherein at least 70 mole percent of the crystalline metal oxide is ZrO2.
Abstract:
A process for forming voided latex particles is improved by combining swelling and polymerization of an outer shell into a single step. The process includes contacting multi-stage emulsion polymer particles comprising a core, at least one intermediate shell, with a swelling agent, and polymerizing an outer shell after said contacting with swelling agent wherein the core and the at least one intermediate shell are contacted with swelling agent in the presence of less than 0.5% monomer based on the weight of the multi-stage emulsion polymer particles, and substantially all of the swelling occurs during polymerization of the outer shell.
Abstract:
A filtration filter used for filtering a liquid chemical for lithography, provided with a polyimide resin porous membrane; a filtration method including allowing a liquid chemical for lithography to pass through the filtration filter; and a production method of a purified liquid chemical product for lithography, including filtering a liquid chemical for lithography by the filtration method.
Abstract:
Porous polymeric particles are provided that can be hydrophilic or hydrophobic. The porous polymeric particles can be used for the storage and delivery of various active agents or for moisture management. Reaction mixtures for forming the porous polymeric particles, methods of making the porous polymeric particles, and articles containing the porous polymeric particles are also provided.
Abstract:
The invention relates to a foamable bead polymer consisting of (meth)acrylonitrile, (meth)acrylic acid, copolymerizable latent expanding agents and optionally (meth)acrylic acid esters, to the production of said polymer by means of suspension polymerization and to the use thereof for producing foams. Using a bead polymer of this type it is possible, for example, to carry out a simple in-mould foaming process to produce products directly in the form of the desired workpiece. These workpieces are particularly suitable for use as components in spacecraft, aircraft, water and land craft and for other construction elements.
Abstract:
The objective of the present invention is to provide a porous ultra-thin polymer film, and a method for producing said porous ultra-thin polymer film. The present invention provides a porous ultra-thin polymer film with a film thickness of 10 nm-1000 nm. In addition, the present invention provides a method for producing a porous ultra-thin polymer film, comprising the steps of: dissolving two types of mutually-immiscible polymers in a first solvent in an arbitrary proportion to obtain a solution; applying the solution onto a substrate and then removing the first solvent from the solution applied onto the substrate to obtain a phase-separated ultra-thin polymer film that has been phase-separated into a sea-island structure; and immersing the ultra-thin polymer film in a second solvent which is a good solvent for the polymer of the island parts but a poor solvent for a polymer other than the island parts to remove the island parts, thereby obtaining a porous ultra-thin polymer film.