Abstract:
Disclosed are stable organo polysilica resin composition containing a B-staged organo polysilica resin and an organic acid, methods of stabilizing such B-staged organo polysilica resin compositions and methods of manufacturing electronic devices using such stable compositions.
Abstract:
The invention concerns a porous composite product in particular with high specific surface area, characterised in that it is formed of a polymeric material and at least 20 % of one or several fillers, and in that the product is obtainable by extrusion. The invention also concerns a method for preparing a porous composite product characterised in that it consists in: a) forming a mixture containing one or several insoluble polymers, one or several soluble or calcinable polymers, one or several fillers; b) extruding said mixture for forming an extruded precursor product; c) eliminating the soluble or calcinable polymer(s) of the extruded precursor product; recuperating the porous composite product. The invention also concerns all extruded object consisting of a porous composite product in particular with high specific area. Finally it concerns an electrode formed of a film of porous composite product.
Abstract:
Methods of preparing porous optical materials are provided. These methods allow for the selection of the desired pore size and level of porosity in the porous optical material. Such methods utilize a preformed polymeric porogen.
Abstract:
The present invention relates to polyalkylene oxide porogens having hyper-branches and low dielectric-constant insulators having nanopores prepared by coating a mixture of the porogen and a high heat-resistant resin such as polysilsesquioxane and thermal treating the coated substrate at a temperature effective to degrade the porogen.
Abstract:
Die Erfindung betrifft eine Formmasse auf Basis von Fluorpolymeren, die zusätzlich 1 bis 50 Gew.-% mindestens eines Sulfoxidgruppen enthaltenden Polymers enthält. Das Sulfoxidgruppen enthaltende Polymer enthält insbesondere Polyarylensulfoxid Einheiten der Formel: -(-C₆H₄-SO-)-.
Abstract:
The invention relates to a process for preparing a microporous membrane from an unsulfonated poly(phenylene sulfide) polymer by forming a mixture of an unsulfonated poly(phenylene sulfide) polymer, an amorphous polymer, and optionally a plasticizer, heating the resulting mixture, extruding or optionally casting the mixture into a membrane, controlled cooling (quenching) or coagulating the membrane, and leaching the membrane, while optionally drawing the membrane before, during, and/or after leaching.
Abstract:
A polyimide precursor solution includes: a polyimide precursor; polyester resin particles containing a polyester resin and having a volume average particle diameter of from 3 μm to 50 μm inclusive and an average circularity of 0.970 or more; and a solvent.
Abstract:
A method of manufacturing a flexible intrinsically antimicrobial absorbent porosic composite controlling for an effective pore size using removable pore-forming substances and physically incorporated, non-leaching antimicrobials. A flexible intrinsically antimicrobial absorbent porosic composite controlled for an effective pore size composited physically incorporated, high-surface area, non-leaching antimicrobials, optionally in which the physically incorporated non-leaching antimicrobial exposes nanopillars on its surface to enhance antimicrobial activity. A kit that enhances the effectiveness of the intrinsically antimicrobial absorbent porosic composite by storing the composite within an antimicrobial container.
Abstract:
A method of manufacturing a flexible intrinsically antimicrobial absorbent porosic composite controlling for an effective pore size using removable pore-forming substances and physically incorporated, non-leaching antimicrobials. A flexible intrinsically antimicrobial absorbent porosic composite controlled for an effective pore size composited physically incorporated, high-surface area, non-leaching antimicrobials, optionally in which the physically incorporated non-leaching antimicrobial exposes nanopillars on its surface to enhance antimicrobial activity. A kit that enhances the effectiveness of the intrinsically antimicrobial absorbent porosic composite by storing the composite within an antimicrobial container.