Abstract:
A flat permeable polyolefin membrane 10 to 500 .mu.m in thickness, which has in one surface thereof a compact layer formed of intimately bound fine polyolefin particles and possessed of fine pores and in the interior and the other surface thereof a layer formed of an aggregate of fine discrete polyolefin particles of an average diameter in the range of 0.01 to 5 .mu.m so adjoined as to form fine labyrinthically continuing through pores and which, therefore, establishes communication between the opposite surfaces of said membrane.
Abstract:
The invention concerns porous fibers and membranes, methods for their preparation and for their use. The fibers are characterized by a smooth porous surface and an apparent density of between about 10 and 90% of the true density of the polymeric starting material employed. The process involves the formation of a homogeneous mixture of at least two components, one of which is a meltable polymer and another liquid inert with respect to the polymer. The mixture formed must be of a binary type, in which there is a temperature range of complete miscibility and a range in which there is a miscibility gap. The mixture is extruded at a temperature above the separation temperature into a bath containing at least some of the inert liquid which is at a temperature below the separation temperature. Upon introduction of the mixture into the bath, the fiber structure of the product is fixed.
Abstract:
A METHOD IF DISCLOSED FOR THE PREPARATION (BY THE UTILIZATION OF A PROPER SOLVENT SYSTEM) OF DRY ASYMMETRIC MEMBERANES COMPRISING A POROUS LAYER OF INTERCONNECTED CRYSTALS OF POLYMER MATERIAL. MEMBRANES OF MANY POLYMER MATERIALS MAY BE OPTIONALLY PREPARED EITHER WITH OR WITHOUT A DENSE SURFACE LAYER AS ONE FACE THEREOF. IN EITHER CASE THE POROUS LAYER IS STRUCTURED WITH GRADED POROSITY. A THREE-COMPONENT CASTING SOLUTION SOLUTION IS PREPARED CONTAINING THE POLYMER, A FIRST GOOD VOLATILE SOLVENT FOR THE POLYMER AND (RELATIVE TO THE FIRST SOLVENT) A POOR LESS-VOLATILE SOLVENT FOR THE POLYMER, WHICH IS MISCIBLE WITH THE GOOD SOLVENT. A MEMBRANE IS CAST, ALLOWED TO DESOLVATE FOR A SHOT TIME AND IS THEN IMMERSED IN A LEACHING AGENT, THAT IT MISCIBLE WITH BOTH THE AFOREMENTIONED SOLVENTS BUT IS A NON-SOLVENT FOR THE POLYMER. THE MEMBRANE IS THEN PERMITTED TO DRY.
Abstract:
Provided is a superabsorbent structure based on a covalently crosslinked copolymer having a microstructure of a HIPE, and characterized by hydrophobic and hydrophilic segments of at least five residues; the unique chemical and structural properties of the copolymer afford a polymeric superabsorbent structure that is capable of swelling in polar as well as apolar media. Also provided are processes of manufacturing the superabsorbent structure, and uses thereof.
Abstract:
The present invention discloses novel porous polymeric compositions comprising random copolymers of amides, imides, ureas, and carbamic-anhydrides, useful for the synthesis of monolithic bimodal microporous/macroporous carbon aerogels. It also discloses methods for producing said microporous/macroporous carbon aerogels by the reaction of a polyisocyanate compound and a polycarboxylic acid compound, followed by pyrolytic carbonization, and by reactive etching with CO2 at elevated temperatures. Also disclosed are methods for using the microporous/macroporous carbon aerogels in the selective capture and sequestration of carbon dioxide.
Abstract:
The present invention relates to a porous silicone body having communicating pores and a three-dimensional network silicone skeleton that forms the pores, wherein the silicone skeleton is formed by polymerization of a bifunctional alkoxysilane and a trifunctional alkoxysilane, and the proportion of unreacted parts in the silicone skeleton is 10 mol % or less. The porous silicone body of the present invention has high flexibility and high heat resistance, and further has excellent recoverability of heat-resistant cushioning properties.
Abstract:
The present disclosure provides a method for producing an aerogel, the method comprising reacting at least one acid monomer with at least one diamino monomer in a first solvent under conditions appropriate to form a polyimide polymer; conducting a solvent exchange wherein the first solvent is exchanged for a second solvent, said second solvent having a freezing point, wherein said solvent exchange further comprises (1) submersing the polyimide polymer in the second solvent in a pressure vessel and (2) creating a high pressure environment inside the pressure vessel for a first period of time; cooling the polyimide polymer to a first temperature below the freezing point of the second solvent; and subjecting cooled polyimide polymer to a first vacuum for a second period of time at a second temperature.
Abstract:
Porous polymer composites and methods of preparing porous polymer composites are provided herein. In some embodiments, a method for preparing porous polymer composites may include mixing a first polymer with a solvent and a particulate filler to form a first polymer composition, wherein the amount of particulate filler in the first polymer composition is below a mechanical percolation threshold; and removing the solvent from the first polymer composition to concentrate the first polymer and particulate filler into a second polymer composition having a porous structure, wherein the particulate filler concentration in the second polymer composition is increased above the mechanical percolation threshold during solvent removal.
Abstract:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
Abstract:
The present invention relates to a porous gelatin material in the form of spherical particles with a continuous pore structure and cast, three-dimensional, porous gelatin structures. The invention also comprises methods for preparation of the porous gelatin materials and structures. The method for preparing the porous gelatin material in the form of spheres with a continuous pore structure comprises the steps of preparing a homogenous water-based gelatin solution, adding an emulsifier with an HLB value >9, adding a first composition comprising an organic solvent and an emulsifier with an HLB value >9, adding a second composition comprising an organic solvent and an emulsifier with an HLB value