Abstract:
PROBLEM TO BE SOLVED: To provide a locking apparatus for fixing an automobile component, which can avoid a collision between the displaceable automobile component and an obstacle existing on its periphery, and a method for assembling the locking apparatus. SOLUTION: This locking apparatus makes the displaceable automobile components (H and S) fixed in stop positions where they arrive by displacement within a displaceable range. The locking apparatus includes a braking device (5) comprising at least two braking members (1 and 2). The braking members (1 and 2) interact with each other in the stop positions of the automobile components (H and S) so as to generate a braking action. An actuator (7) for fixing the automobile components (H and S) is mounted on the bracing device (5) in a selectively combinable manner. In this case, the actuator (7) is connected to a component member (35) capable of making motion during the displacement motion of the automobile components (H and S), in such a manner as to be operable to enable the braking of the displacement motion of the automobile components (H and S) independently of the braking device (5). COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PCT No. PCT/DK97/00597 Sec. 371 Date Jun. 17, 1999 Sec. 102(e) Date Jun. 17, 1999 PCT Filed Dec. 23, 1997 PCT Pub. No. WO98/30816 PCT Pub. Date Jul. 16, 1998A linear actuator includes a housing, a spindle rotatable in both directions, a threaded nut driving a piston rod, and a motor capable of driving the spindle through a transmission, a disengagement unit being arranged in the transmission for interrupting the connection between the motor and the spindle in case of operational failure, such as overloading of the spindle, the disengagement unit comprising brake means adjustable with respect to the actuator housing to cooperate with coupling means for control of the rotational speed of the spindle when this is disengaged from the motor. The linear actuator provides an emergency function ensuring that the linear actuator and the carried load are not damaged by overloading of the actuator.
Abstract:
A clutch is arranged between a rotatable shaft and a worm shaft in a motor. The clutch includes a driving-side rotator connected to the rotatable shaft, a driven-side rotator connected to the worm shaft, a spring support and a coil spring arranged in the spring support. When the driving-side rotator is rotated upon energization of the motor, the coil spring is wound by the driving-side rotator to reduce an outer diameter of the coil spring, so that the rotation of the driving-side rotator is transmitted to the driven-side rotator and the worm shaft. When the driven-side rotator is rotated by an external mechanical force, the coil spring is unwound by the driven-side rotator to increase the outer diameter of the coil spring, so that a frictional force between the spring support and the coil spring is increased to restrain rotation of the driven-side rotator.
Abstract:
An improved two-way torque limiting coupling (10) of the type utilizing a single helical coil clutch (18) and an automatic slack adjuster utilizing same is provided. The coupling provides a driving connection between a first (12) and a second (14) rotatable adjacent members. The first member includes a bore (24) opening to an end (20) in which one end of coil clutch is received in interference fit to define an internal clutch interface (34) and the other member defines an annular outer periphery (26) about which the other end of the coil clutch is received in an interference fit to define an external clutch interface (36). For the direction of rotation tending to expand the coil clutch (18), the coupling will slip at the external interface (36) which is the low maximum torque transfer direction of rotation for that interface and for the direction of rotation tending to contract the coil clutch (18), the coupling will slip at the internal interface (34) which is the low maximum torque transfer direction of rotation for that interface.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
Transmission drive unit (10), in particular for adjusting movable parts in the motor vehicle, having a drive motor (12) and a transmission (14) which is driven thereby, wherein the transmission (14) has an output element (70) and a self-locking device (60) with a locking element (63, 55), and the locking element locks the transmission (12) with respect to torques which are applied to the transmission (12) by the output element (70), wherein the transmission (12) with its transmission toothing (47) and a motor shaft bearing (32, 28) is designed to have optimized efficiency and minimal friction, and the drive motor (12) has, as an exciter magnet, a sleeve-shaped annular magnet (18) which is arranged in a pole pot (16) which forms a magnetic return.
Abstract:
A high-load linear actuator includes a driving mechanism, a worm shaft, a worm wheel assembly, a lead screw, a telescopic pipe and an outer pipe. The driving mechanism includes a base and a motor. The base has a supporting portion and an accommodating portion. The motor is fixed to the supporting portion. The worm shaft extends from the motor into the supporting portion. The worm wheel assembly includes a worm wheel and two bearings for supporting the worm wheel in the accommodating portion. The worm wheel is drivingly engaged with the worm shaft. The lead screw is disposed through the worm wheel and driven by the motor for rotation. The telescopic pipe slips on the lead screw to be threadedly connected therewith. The outer pipe slips on the telescopic pipe. The rotation of the lead screw drives the telescopic pipe to linearly extend or retract relative to the outer pipe.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
The invention relates to a motor-driven device for actuating a movable panel (1) of a motor vehicle, including: a drive unit (3); a transmission element (5) which is to be set into motion by the motor unit (3); a braking module (7) for the transmission element (5), characterized in that the braking module (7) is connected to the transmission element (5) by a clutch module (9) positioned between the transmission element (5) and the drive unit (3), and comprising a wound spring (35) in friction contact with a brake shaft (23) connected to the braking module (7), as well as two coupling elements (25, 27) that are mutually engaged with a functional clearance therebetween, the relative change in position of said two coupling elements (25, 27) enabling the ends (37, 38) of said wound spring (35) to be controlled so as to switch the ends between an engaged position and a disengaged position of the braking module (7), wherein the two coupling elements (25, 27) are a drive element and a driven element, respectively.