Abstract:
A piece of furniture has an actuating arrangement for a flap of the piece of furniture. An actuating arm arrangement includes a lever arrangement for moving the flap and a main spring that acts in the closing direction (SR) to hold the flap closed. The piece of furniture also has an ejecting device for ejecting the flap in the opening direction (OR) by overpressing the flap in the closing direction (SR). At least one support spring acts in the opening direction (OR) and is separate from the ejecting device, and supports the ejecting motion of the ejecting device. At least in an overpressed closed position (US), the spring forces (A, U) are together greater than the closing force (Z) which acts on the flap and which is provided by the main spring acting in the closing direction (SR).
Abstract:
The invention relates to an actuator device for automatically activating the vehicle door (2) of a motor vehicle (1), in particular the tailgate (2), which comprises an electromotive drive (9) and an arrangement of tubular housing parts (7, 8) which can be extended and retracted telescopically by said electromotive drive (9), said electromotive drive comprising an electrical motor (14) and a gearbox (20) driven by the motor (14), characterized in that, the gearbox (20) comprises a wobble mechanism (34, 46, 68, 72).
Abstract:
The invention relates to an actuating drive for moving a flap of a piece of furniture, comprising: at least one pivotably supported actuating arm for moving the flap, a spring device for applying a pivoting torque to the actuating arm in the opening direction, and an adjusting device having an adjusting screw, which has a thread, wherein the pivoting torque of the spring device acting on the actuating arm can be adjusted by means of a rotational motion of the adjusting screw, wherein the adjusting screw has a screw shaft, wherein a screw nut is supported in such a way that said nut can be moved along the screw shaft by means of a rotational motion of the adjusting screw, wherein the adjusting screw has a blocking device separate from the thread, which blocking device prevents an unintentional rotational motion of the adjusting screw.
Abstract:
A drive device for a deployment element of a motor vehicle, in particular for a pivotable hinged window, which can be moved between an open position and a closed position in a motorized manner is provided. A spur gear transmission driven by an electric motor comprises an output gear having a coupling lever for coupling a deployment lever in a rotationally movable manner, a spur gear that meshes with the output gear, and an intermediate gear that is coaxial with the spur gear. The output gear has outer teeth having two teeth sections of different axial tooth width. The deployment lever that is coupled to the coupling lever extends in a plane of symmetry perpendicular to the rotational axes of the spur gear transmission.
Abstract:
A piece of furniture including a body and at least one flap that can be upwardly displaced by means of at least one actuating arm which is joined to the flap in an articulated manner and can preferably be pivoted about a horizontal axis. At least one actuating arm is subjected to the action of a spring device, and at least one electric drive acts on at least one actuating arm. A coupling device acts between the electric drive and the actuating arm, said coupling device having a free wheel for freely displacing the actuating arm into an open position and/or a closed position, in at least one rotary direction over a defined angular region.
Abstract:
The present invention provides for apparatus and methods for operating a garage door. An embodiment of an operating assembly for a door includes a shaft, a graduated drum, and an energy storing member. The shaft is coupled to the door such that the shaft rotates in a first direction as the door is opened and rotates in a second direction as the door is closed. The coupling of the shaft to the door is typically accomplished by a cable. The graduated drum is coupled to the shaft and the energy storing member is coupled to the graduated drum by another cable. The energy storing member is arranged such that the energy storing member stores energy as the door is closed and releases stored energy as the door is opened to assist in the raising and lowering of the door.
Abstract:
The invention relates to a hinge arrangement, in particular for a tailgate of a motor vehicle, having a first hinge part, in particular firmly connected to the body, which is knuckle-jointed with a second hinge part, and having an energy accumulator, the force application points of which are positioned in relation to both hinge parts in such a way that the force released upon its discharge supports the rotation of the two hinge parts around the hinge axis from a first rotation position, which corresponds in particular to a closed position of the tailgate, to a second rotation position, which corresponds in particular to the open position of the tailgate. To obtain useful improvements, a transposition device is proposed for transposing at least one force application point in one of the two rotation positions, so that after a transposition onto the hinge parts a force acts in the opposite rotation direction.
Abstract:
A garage door cable drum is disclosed for a sectional overhead door of a type having a substantially non-linear lift-weight to lift-height characteristic. The drum includes a generally spiral cable groove having a variable minor radius. The groove minor radius at any intermediate point along the groove is sized to provide a lift-cable moment arm that yields a corresponding cable lift force that is slightly less than an instantaneous lift weight of the garage door at any intermediate door elevation.
Abstract:
A mechanism and method for operating a track-mounted door is disclosed. The mechanism includes a pair of side drums that are connected by first cables to the bottom of the door. The side drums are coaxially mounted on a shaft for simultaneous rotation with a pair of cable drums. The cable drums are connected to high pressure gas struts by second cables. Each second cable is carried around a shiv wheel that slides along a guide track as the second cable moves. Each shiv wheel is operatively connected to one of the gas struts. As the shiv wheel moves along the guide track toward the cable drum, the gas strut is charged. As the shiv wheel moves away from the cable drum, the gas strut is discharged. A standard electric motor and screw driven lift-arm is used to initiate the opening and closing of the door. The charged gas strut stores sufficient energy to overcome friction and gravity to assist the electric motor and lift-arm to open the door.
Abstract:
A method and system for controlling the descent of a moveable element pivotally attached to a rigid structure is described herein. The moveable element is directly attached to the rigid structure, and is then connected to a compressible strut, which is attached to a linkage connected to the rigid structure. The descent of the moveable element is controlled using a microcontroller and a motor attached to the linkage, and the control path for the linkage is selected based on a comparison of the angle between the linkage and rigid structure and the angle between the moveable element and the rigid structure.