Abstract:
The present invention provides a solid fuel burner, which, while rendering the capacity larger than that in the conventional art, can suppress an increase in an unignited region and thus can realize the prevention of an increase in NOx concentration in a combustion gas and the prevention of a lowering in combustion efficiency, and a combustion equipment and boiler including the burner. The burner includes a fuel-containing fluid supply nozzle (12) which supplies a fuel-containing fluid, from a connecting part in a fluid transfer flow passage (10) for transferring a fuel-containing fluid including a fuel and a medium for transfer of the fuel, toward an outlet part provided on the wall of a furnace (4). The fuel-containing fluid supply nozzle (12) in its cross section perpendicular to the direction of flow of the fluid is in a rectangular, elliptical, or substantially elliptical form having major and minor axis parts from a connecting part (10a) in the fluid transfer flow passage (10) toward the outlet part provided on the wall surface of the furnace (4). Further, the area of a cross section perpendicular to the direction of flow of the fluid is gradually increased from the connecting part in the fluid transfer flow passage (10) toward the outlet part. One or more air supply nozzles (15) for supplying combustion air are provided on the outer peripheral part of the nozzle (12).
Abstract:
A burner comprises a body, a nozzle, and at least one attachment element for removably attaching the nozzle to the body. The body defines an oxidant inlet, a feedstock inlet, a body outlet, and one or more passages for conveying the oxidant from the oxidant inlet to the body outlet and for conveying the gasification feedstock from the feedstock inlet to the body outlet. The nozzle defines a nozzle inlet and a nozzle outlet, wherein the nozzle inlet is configured to receive the oxidant and the gasification feedstock from the body outlet and the nozzle outlet is configured to discharge the oxidant and the gasification feedstock into the reaction chamber. The at least one attachment element removably attaches the nozzle to the body such that the nozzle inlet is in fluid flow communication with the body outlet when the nozzle is attached to the body.
Abstract:
Disclosed is a burner for oxidant gasification of pulverized fuels under high pressures, e.g. 80 bar, and temperatures, e.g. 1200 to 1900° C., in reactors with liquid slag removal for oxygen gasification. The individual pulverized coal supply tubes in the burner are inclined toward the burner axis in the direction of the burner mouth, are implemented equiareally from the burner inlet up to the burner outlet, and end at the burner mouth adjacent to the oxidant outlet. Owing to the pulverized fuel feeding elements being implemented right up to the burner mouth and the instantaneous entry of the pulverized coal into the rotating oxygen stream there is no longer any areal discontinuity at the dust outlet, since here the pulverized coal stream is immediately sucked into the oxidant stream. At the outlet of the media the individual pulverized coal streams merge into a single rotating pulverized coal/oxygen stream, thereby achieving an even flame spread and stabilization.
Abstract:
A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load. By increasing the amount of air from the additional air nozzle 12 at a low load operation, an oxygen concentration of a circulation flow 19 formed in a downstream portion outside the exit of the fuel nozzle 11 is increased to stably burn the fuel. By decreasing the amount of air from the additional air nozzle 12 at a high load operation, a flame is formed at a position distant from the fuel nozzle 11 to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.
Abstract:
A solid fuel burner using a low oxygen concentration gas as a transporting gas of a low grade solid fuel such as brown coal or the like and a combustion method using the solid fuel burner are provided. The solid fuel burner comprises a means for accelerating ignition of the fuel and a means for preventing slugging caused by combustion ash from occurring. Mixing of fuel and air inside a fuel nozzle 11 is accelerated by that an additional air nozzle 12 and a separator 35 for separating a flow passage are arranged in the fuel nozzle 11, and the exit of the additional air nozzle 12 is set at a position so as to overlap with the separator 35 when seeing from a direction perpendicular to a burner axis, and additional air is ejected in a direction nearly perpendicular to a flow direction of a fuel jet flowing through the fuel nozzle 11. An amount of air from the additional air nozzle 12 is varied corresponding to a combustion load. By increasing the amount of air from the additional air nozzle 12 at a low load operation, an oxygen concentration of a circulation flow 19 formed in a downstream portion outside the exit of the fuel nozzle 11 is increased to stably burn the fuel. By decreasing the amount of air from the additional air nozzle 12 at a high load operation, a flame is formed at a position distant from the fuel nozzle 11 to suppress radiant heat received by structures of the solid fuel burner and walls of the furnace.
Abstract:
A mixture of pulverized coal and primary air travels axially through a tubular nozzle body having an outlet end in and surrounded by axially flowing concentric streams of secondary and often tertiary air. In the nozzle body, the coal/air mixture flows through a venturi that concentrates the coal in a fuel rich central zone. The coal/air mixture then flows through a spreader that imparts a swirling motion to the mixture and divides the mixture into multiple discrete lobes or streams. At the outlet end of the nozzle body, a flame stabilizer ring produces a separation zone between the coal/air mixture exiting the nozzle body and the surrounding flow of secondary air. The flame stabilizer ring includes an outwardly flared skirt section that spreads the secondary air flow and inwardly directed teeth that extend into the streams of coal/air mixture flowing from the nozzle body outlet.
Abstract:
A solid fuel burner to be inserted into a burner throat bored in a wall portion of a furnace, comprising: a solid fuel nozzle for ejecting mixed fluid of solid fuel and primary air; a secondary air nozzle for ejecting secondary air; a tertiary air nozzle for ejecting tertiary air; a secondary air guide member for guiding a flow of the secondary air outwardly in a radial direction; and one or more tertiary air guide members for guiding a flow of the tertiary air outwardly in the radial direction at a first angle with respect to a central axis (C) of the solid fuel burner, wherein a distal end position (X2) of each of the tertiary air guide members in an axial direction of the solid fuel burner is at a closer side of the furnace than a distal end position (X1) of the secondary air guide member.
Abstract:
In this combustion burner and boiler, interference of ignition in a flame stabilizer is suppressed and flame stabilizing performance is improved by providing: a fuel nozzle which ejects a fuel gas that is a mixture of pulverized coal and air; a combustion air nozzle which ejects a fuel gas combustion air from outside of the fuel nozzle; a secondary air nozzle which ejects secondary air from the outside of the combustion air nozzle; and a flame stabilizer which comprises a first flame stabilizer main body which is arranged at the leading end of the fuel nozzle and separated by a prescribed space from the inner wall surface of the fuel nozzle and which forms a ring shape having as the center an axial line along the ejection direction of the fuel gas.
Abstract:
A solid fuel nozzle tip for issuing a flow of mixed solid fuel and air to a boiler includes a tip body having an inlet and an outlet defining a longitudinal axis therebetween. The tip body includes a slot on an inlet side of the tip body extending in a direction parallel to the longitudinal axis. The slot includes an opening facing the inlet side of the tip body and a recess formed at an angle with respect to the longitudinal axis to at least partially retain a pivot pin. A solid fuel nozzle assembly for issuing a flow of mixed solid fuel and air to a boiler includes a solid fuel nozzle tip with a tip body, as described above, and a locking plate operatively connected to the tip body to assist in retaining a pivot pin within the slot of the tip body.
Abstract:
The igniter lance include a lance fuel duct for pulverised fuel and an electric igniter for ignition of the pulverized fuel passing through the lance fuel duct.