Abstract:
A process for control melting a mixture of coal ash, electric arc furnace dust, recycled glass and additives to create a feedstock. The feedstock is quenched or air dried in a mold to create useful products, such as fracking compounds, abrasives, construction products, building materials, landscaping materials, and the like.
Abstract:
A method controls mass and heat loading of sludge feed into a fluidized bed combustor (FBC) controlled via regulation of a polymer dosage or a sludge feed rate including: continuously monitoring at least one performance characteristic of the FBC; producing an input signal characteristic; analyzing the input signal and determining a first rate of change of the characteristic; generating an output signal based on the first rate of change to control addition of polymer to the FBC; generating a second output signal to control addition of sludge feed to the FBC; and determining a transition point between the addition of polymer and addition of sludge, which transition point is an upper limit of a first rate change to maintain flow so that the value of the characteristic is maintained proximate at the upper limit.
Abstract:
A method is provided for heavy metal stabilisation comprising: mixing waste, comprising heavy metals, with molecular sieve with the proviso that carbon-based molecular sieve is excluded, and clay; and vitrifying the mixture. In particular, a method comprising the steps of: preparing a pre-stabilised mixture by mixing waste, comprising heavy metals, with the molecular sieve, and optionally other chemicals; mixing the pre-stabilised mixture with clay; and vitrifying the obtained mixture is provided. It also provides a product comprising heavy metals that have been stabilised into the structure of the clay-based ceramic matrix, wherein the product is a vitrified product of a mixture of at least waste, comprising heavy metals, molecular sieve (with the proviso that carbon-based molecular sieve is excluded) and clay.
Abstract:
A method for processing waste material into fuel or other useful substances without polluting the air comprising the steps of: a. Introducing waste material into a storage chamber which allows the liquid to drain into a tank, b. Moving the waste to a storage chamber where it is burned, c. Moving the emissions and dust to a cleaning and burning chamber where they are further condensed, Or a. Pasteurizing sludge and raw sewage and using the gases produced for heat energy, b. Forming a solid of the liquid substances by adding ground corn and/or millet to them and using the solid for fuel.
Abstract:
A method and an apparatus for treating and utilizing waste materials and mixtures thereof in multiple steps resulting in a high-yield utilization particularly of organic components of the waste for generating kinetically useful energy. The waste materials are sorted by classes, principally between organic and non-organic, e.g. metallic and ceramic, substances. The organic substances are briquetted and gasified, the produced gas being utilized for the direct and indirect generation of electricity and heat.
Abstract:
A method and an apparatus for treating and utilizing waste materials and mixtures thereof in multiple steps resulting in a high-yield utilization particularly of organic components of the waste for generating kinetically useful energy. The waste materials are sorted by classes, principally between organic and non-organic, e.g. metallic and ceramic, substances. The organic substances are briquetted and gasified, the produced gas being utilized for the direct and indirect generation of electricity and heat.
Abstract:
Processes and systems are provided that include introducing ammonia liberated from organic waste to a coal burner in a coal burning power plant, preferably for NOx removal at the power plant. The ammonia is preferably either ammonia liberated upon drying a mixture of organic waste and coal combustion by-products or ammonia liberated when organic waste is mixed with coal combustion by-products and one or more alkaline additives. Also provided are processes and systems of fueling a coal burner of a power plant with coal and either a dried mixture of organic waste and coal combustion by-products, or a mixture of organic waste, coal combustion by-products and one or more alkaline additives. The present invention is further directed to mixtures of either organic waste and coal combustion by-products, or mixtures of organic waste, coal combustion by-products and alkaline additives made by the processes of the present invention.
Abstract:
Methods and systems for treating organic waste, which include determining the ignition threshold temperature for the organic waste and at least one mineral by-product, selecting a ratio of organic waste:mineral by-product(s) based on the determined ignition threshold temperature, combining the mineral by-product(s) with the organic waste, so as to arrive at a mixture having the selected ratio of organic waste:mineral by-product(s); and drying the mixture of organic waste and mineral by-product(s) to produce organic waste solids. The treatment methods of the present invention are methods of stabilizing the treated organic waste so as to control the tendency of the organic waste to ignite. Also provided are organic waste solids formed by the methods of the present invention.
Abstract:
Processes and systems are provided that include introducing ammonia liberated from organic waste to a coal burner in a coal burning power plant, preferably for NOx removal at the power plant. The ammonia is preferably either ammonia liberated upon drying a mixture of organic waste and coal combustion byproducts or ammonia liberated when organic waste is mixed with coal combustion by-products and one or more alkaline additives. Also provided are processes and systems of fueling a coal burner of a power plant with coal and either a dried mixture of organic waste and coal combustion by-products, or a mixture of organic waste, coal combustion by-products and one or more alkaline additives. The present invention is further directed to mixtures of either organic waste and coal combustion by-products, or mixtures of organic waste, coal combustion by-products and alkaline additives made by the processes of the present invention.
Abstract:
A system and method for treating, injecting and co-combusting sludge in a municipal waste or other combustor is disclosed. The system includes a sludge receiving and treatment module and a sludge injection and combustion module. The sludge is received and stored in one or more storage hoppers where it is first diluted with a liquid and subsequently mixed to a desired homogeneous consistency suitable for pumping. The high liquid content sludge is then pumped to a furnace injection nozzle where it is preferably atomized with steam and sprayed into the combustion zone of the furnace. The disclosed system and method increases sludge moisture content and controls the solids content of the sludge to control furnace temperature.