Abstract:
A thermally regulated central heating system comprising a hot fluid generator, radiators, a pipe supplying hot fluid between the generator and the radiators, a cooled fluid return pipe between the radiators and the generator, a three-way mixer valve inserted in the hot fluid supply pipe, a mixed fluid circulating pump inserted in the supply pipe between said valve and the radiators, a cooled fluid recycling pipe connecting the return pipe to the mixer valve and means for controlling the closure member of the mixer valve responsive to a differential pressure which is a function of the mixed fluid flow sent to the radiators. The mixer valve divides the supply pipe into a hot fluid supply pipe section and a mixed fluid supply section. The control means is connected by two pressure take-off pipes to points of the mixed fluid supply pipe section located respectively upstream and downstream of a restriction means in said mixed fluid pipe section. A thermostatically controlled flow regulating device is inserted in said mixed fluid supply pipe section.
Abstract:
The present disclosure provides a water heating system for efficient heating of water for immediate use that fits either to industrial applications or household applications. The water heating system is suitable to be combined with a solar heating unit and it can be operated on electric power or on gas-based heating units for providing hot water to multiple consumers for household or industrial utilization. Furthermore, the system can be stand-alone, operating without any additional water heating system and can provide an immediate stream of hot water, e.g. it can be installed within a water supplying appliance. The water can operate in two modes: (1) heating for immediate use of hot water; and (2) heating water to be contained in a reservoir for later use. The system uses a two (bi) directional flow valve.
Abstract:
A water heating system having a system inlet pipe (1.002), a hot water delivery pipe (1.003) and a hot water return pipe (1.006) connected to a building hot water distribution network (1.024); the water heating system including one or more water heaters (1.001), the or each water heater having a heater inlet (1.022) and a heater outlet (1.023), a hot water return pipe (1.006) connected between the system inlet and delivery outlet via the building hot water distribution network to form a close loop hot water supply-return circuit; a pump (1.005) connected to circulate water through the hot water supply-return circuit whereby the pump can circulate water through one or more of the water heaters;a valve means (1.007) [a first non-return valve] adapted to prevent inlet water (water delivered to the system inlet) from flowing into the hot water return pipe or the building hot water distribution network.
Abstract:
A hydraulic network (1) having plural parallel zones (Z1, Z2) with a regulating valve (V1, V2) in each zone for regulating a flow of fluid (φ1, φ2) through respective zones. Characteristic parameters of the hydraulic network (1) include static flow capacity values (Kex,a, Kex,b) of the zones. Measurement data sets are recorded which include a determined value of a hydraulic system variable of the hydraulic network (1), e.g. the total flow (φtot) or the system pressure (ΔP), and valve positions of the regulating valves (V1, V2) set for the determined value of the hydraulic system variable. The characteristic parameters are calculated from plural measurement data sets, by grouping related measurement data sets, which include the same value of the hydraulic system variable but different valve positions, and by using the flow capacity (Kvalve,a, Kvalve,b) of the regulating valves (V1, V2) at the valve positions included in the data sets.
Abstract:
According to an embodiment of the disclosure, a system for regulating a pressure differential includes a plurality of valving elements and a valve activation system. Each of the plurality of valving elements are configured to selectively allow and restrict at least a portion of a flow of fluid between an inlet and an outlet of a conduit through a respective opening and closing of each respective valving element. The valve activation system is configured to supply a common driving pressure to the plurality of valving elements. The common driving pressure is configured to initiate at least one of the opening or closing of the plurality of valving elements or to initiate the other of the opening or closing of the plurality of valving elements.
Abstract:
It is possible to realize flow rate control regardless of the scale on a load side or a piping system and to achieve energy saving. In a host control device (20) of a heat source system, a bypass valve opening command value is determined by an opening command value determination unit (22) such that a header differential pressure matches a target differential pressure value, and a target opening value according to the header differential pressure or the behavior of the bypass valve opening is set by a target opening value setting unit (24). A heating medium flow rate set value is determined by a heating medium flow rate setting unit (23) using the target opening value set by the target opening value setting unit (24) and the opening command value determined by the opening command value determination unit (22).
Abstract:
An on demand tankless water heater system that is capable of quickly delivering water within a desired temperature range. The tankless water heater provides a hybrid heating method that contains a primary heating system and a secondary heating system disposed in a buffer tank that cooperate to facilitate control of output water temperature during water usage. A pressure differential switch detects low flow demand and allows the secondary heating system to provide immediate heating to the water. This secondary heating system provides a faster temperature response and fine tuning of output water temperature.
Abstract:
A hydronic system controls the air temperature in a plurality of zones. The system has a plurality of heat exchangers, each one being associated with a respective zone. The mass flow rate of a working fluid through each heat exchanger is controlled to maintain the working fluid temperature drop across the heat exchanger a constant, chosen for efficient operation of the boiler or chiller which transfers heat to or from the working fluid. The flow of air in each zone through each heat exchanger is controlled by the air temperature in the zone. A respective valve associated with each heat exchanger is used to control the mass flow rate of the working fluid through the heat exchanger, and also imposes an upper limit of the mass flow rate established by balancing the hydronic system. The upper limit is controlled by a parameter proportional to mass flow rate.
Abstract:
An automatic balancing valve is disclosed which is equipped with choking means that can be operated manually with a ring nut placed below the actuating member of the shutter and aligned axially therewith. Advantageously, the dimensions of the ring nut are larger in plan view compared to the plan view dimensions of the actuating member so as to allow its rotation without removing the actuating member.
Abstract:
Disclosed is a control system for controlling a plurality of fluidly and operably connected water heaters to meet a hot water demand such that overall efficiency is maximized and usage disparity between water heaters is minimized. There is further disclosed a method for detecting a small system demand in said network by adjusting the setting of each flow limiting valve of each water heater. There is still further disclosed a method for enabling seamless addition or removal of a heater in service and heating load distribution to water heaters.