Abstract:
A device is provided for combining two or more separate components of an optical analysis system, to use common entrance and exit apertures for optical measurements across a measurement space such as a stack, combustion chamber, duct or pipeline, in such way that the optical paths from the respective light sources to detectors are substantially the same, enabling multiple optical measurements over a single optical path or closely aligned optical paths with equivalent ambient conditions such as temperature and pressure distribution and background substance concentrations. The device and a set of interconnectable devices forming a modular system are useful, for example, in absorption spectroscopy, such as for measuring the amount fraction of the chemical constituents of a fluid in a measurement volume.
Abstract:
In an embodiment, an apparatus includes a module assembly and a main assembly. The module assembly includes a module assembly housing, a first faceplate and an analysis unit attached to the first faceplate. The main assembly includes a main assembly housing, a second faceplate and an engine unit rigidly attached to the second faceplate. The engine unit generates a light that passes to the analysis unit via a first lens assembly and a second lens assembly. The first lens assembly is attached to the first faceplate and the second lens assembly is attached to the second faceplate. The module assembly when attached to the main assembly causes the first and second faceplates to act as a single mechanical unit that moves independent of movement of the module assembly housing and/or the main assembly housing.
Abstract:
Systems and methods for measuring a target in a sample, the target being capable of generating an emitted light in response to an excitation light. In an example system, an excitation light source generates the excitation light along an excitation optical path. An attenuation filter arrangement selectively adds an attenuation filter to the excitation optical path. The attenuation filter attenuates the excitation light by a corresponding attenuation factor. The excitation light exits the attenuation filter arrangement along the excitation optical path to illuminate the sample. A light energy detector receives the emitted light generated in response to the excitation light, and outputs a measured signal level corresponding to an emitted light level. If the light energy detector indicates an overflow, signal measurement is repeated with attenuation filters of increasing attenuation factors until the measured signal level does not overflow.
Abstract:
The invention provides for a multiple analyte detector that is capable of detecting and identifying explosive, chemical or biological substances having multiple analytes with a single system having multiple reporters. The reporters include fluorescent polymers, conducting polymers, metal oxide elements electrochemical cells, etc. The reporters may be combinations of other reporters that are optimized for broadband detection.
Abstract:
A photo-acoustic gas sensor and methods for producing same, the gas sensor having a resonance body and a device for detecting a vibration of the resonance body, including a device for optically detecting the location of at least one partial surface of the resonance body, wherein the resonance body and the device for detecting a vibration are disposed on exactly one substrate, the resonance body is formed by at least one first recess of the substrate, and the substrate is a semiconductor material.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The cartridge has one or more light sources and/or optical systems and other components that are specific for a certain type of application such as fluorescence, absorbance, or luminescence. The light source, optical systems, and other components for a specific application are housed in a single cartridge. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed.
Abstract:
An imaging device includes an illumination module comprising at least one emitter for emitting at least one excitation beam; a scanning and injection module comprising an image guide, a proximal end and a distal end of which are linked by a plurality of optical fibers; a scanning and injection optical system configured to alternately inject the at least one excitation beam into an optical fiber of the image guide from the proximal end of the image guide; a detection module comprising a detector for detecting a luminous flux collected at the distal end of the image guide, wherein at least one of the illumination module and the detection module is optically conjugated with the scanning and injection module using a conjugating optical fiber.
Abstract:
The invention provides for an optical measuring instrument and measuring device. The optical measuring instrument for investigating a specimen contained in a sample comprises at least one source for providing at least one electromagnetic beam intended to irradiate the sample and to interact with the specimen within the sample, at least one sensor for detecting an output of the interaction between the specimen and the electromagnetic beam, an integrally formed mechanical bench for the optical and electronic components, a sample holder for holding the sample, wherein the at least one source, the at least one sensor, and the mechanical bench are integrated in one monolithic optoelectronic module and the sample holder can be connected to this module.
Abstract:
Techniques are described for the detection of multiple target species in real-time PCR (polymerase chain reaction). For example, a system comprises a data acquisition device and a detection device coupled to the data acquisition device. The detection device includes a rotating disk having a plurality of process chambers having a plurality of species that emit fluorescent light at different wavelengths. The device further includes a plurality of removable optical modules. Each of the removable optical modules is optically configured to excite the species and capture fluorescent light emitted by the species at different wavelengths. A fiber optic bundle coupled to the plurality of removable optical modules conveys the fluorescent light from the optical modules to a single detector.
Abstract:
A control module including means for controlling an article, means for regulating at least one parameter of the article control means, and means for driving the article towards the control means. More specifically, the module is movable and includes a releasable means of connection with a fixed frame. Preferably the drive means includes a carousel having at least one cell for housing the article, for example a glass bottle.